Startseite Weld quality and productivity of AISI 4140 steel welded by unpulsed and pulsed GMAW
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weld quality and productivity of AISI 4140 steel welded by unpulsed and pulsed GMAW

  • Turhan Kursun und Tanju Teker
Veröffentlicht/Copyright: 3. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, AISI 4140 steel couples 10 mm in thickness were joined using manual gas metal arc (GMAW) and synergic controlled pulsed gas metal arc (GMAW-P) welding methods. Interfacial images of welded samples were investigated using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods. Impact and microhardness tests were performed to determine the mechanical properties of the joined parts. In addition, the fracture surface of the broken joint with the impact test was examined using SEM. The AISI 4140 welded joints obtained by the GMAW-P method showed higher impact strength, less grain growth and narrower heat affected zone (HAZ) than by using the GMAW method. It is thought that this is caused by lower heat input.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie, wurden 10 mm dicke Bleche des Stahles AISI 4140 mittels des manuellen MAG-Schweißprozesses ungepulst und kontrolliert gepulst verbunden. Die Verbindungszone wurde mittels Lichtmikroskopie, Rasterelektronenmikroskopie sowie mittels EDS- und XRD-Analysen untersucht. Außerdem wurden Kerbschlagversuche und Mikrohärtemessungen durchgeführt, um die mechanischen Eigenschaften der Verbindungen zu prüfen. Zusätzlich wurden die Bruchoberflächen der Kerbschlagproben mittels REM untersucht. Die Verbindungen des Stahles AISI 4140, die mittels des gepulsten MAG-Prozesses hergestellt wurden, wiesen eine höhere Festigkeit, ein geringeres Kornwachstum und eine schmalere Wärmeeinflusszone als die mittels des ungepulsten MAG-Verfahrens hergestellten Proben auf. Es wird angenommen, dass dies auf die geringere Wärmeeinbringung zurückzuführen ist.


*Correspondence Address, Dr. Tanju Teker, Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Adıyaman, 02040 Adıyaman, Turkey, E-mail: ,

Associate Prof. Dr. Turhan Kursun, born in 1960, is Associate Professor in the Department of Manufacturing Engineering, Faculty of Technology, University of Cumhuriyet, Sivas, Turkey. He graduated from the Department of Machine Education, Faculty of Technic Education, University of Marmara, İstanbul, Turkey, in 1988. He received MSc and PhD degrees from Erciyes University, Kayseri, Turkey, in 1994 and 1998, respectively. His research interests include fusion welding and solid state welding methods.

Associate Prof. Dr. Tanju Teker, born in 1971, is Associate Professor in the Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Adiyaman, Adiyaman, Turkey. He graduated from the Department of Metallurgy Education, University of Gazi, Ankara, Turkey, in 1997. He received MSc and PhD degrees from Firat University, Elaziğ, Turkey, in 2004 and 2010, respectively. His research interests include surface coating techniques, fusion welding, solid state welding methods and casting.


References

1 T.Teker: Effect of synergic controlled pulsed and manual gas metal arc welding process on mechanical and metallurgical properties of AISI 430 ferritic stainless steel, Archives of Metallurgy and Materials58 (2013), No. 4, pp. 1029103510.2478/amm-2013-0122Suche in Google Scholar

2 P. K.Ghosh, L.Dorn, M.Hubner, V. K.Goyal: Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy, Journal of Materials Processing Technology194 (2007), No. 1–3, pp. 16317510.1016/j.jmatprotec.2007.04.113Suche in Google Scholar

3 V. K.Goyal, P. K.Ghosh, J. S.Saini: Influence of pulse parameters on characteristics of bead-on-plate weld deposits of aluminum and its alloy in the pulsed gas metal arc welding process, Metallurgical and Materials Transactions A39 (2008), No. 13, pp. 3260327510.1007/s11661-008-9637-8Suche in Google Scholar

4 R.Kumar, U.Dilthey, D. K.Dwivedi, P. K.Ghosh: Thin sheet welding of Al 6082 alloy by AC pulse-GMA and AC wave pulse-GMA welding, Materials Design30 (2009) No. 2, pp. 30631310.1016/j.matdes.2008.04.073Suche in Google Scholar

5 V. V.Satyanaryana, G. MadhusudhanReddy, T.Mohands: Dissimilar metal friction welding of austenitic-ferritic stainless steels, Journal of Materials Processing Technology160 (2005), No. 2, pp. 12813710.1016/j.jmatprotec.2004.05.017Suche in Google Scholar

6 P.Praveen, P. K. D. V.Yarlagadda: Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding, Journal of Materials Processing Technology164–165 (2005), pp. 1106111210.1016/j.jmatprotec.2005.02.224Suche in Google Scholar

7 P.Sukhomay, K. P.Suriya, K. S.Arun: Determination of optimal pulse metal inert gas welding parameters with a neuro-GA technique, Materials and Manufacturing Processes25 (2010), No. 7, pp. 60661510.1080/10426910903179963Suche in Google Scholar

8 M.Balasubramanian, V.Jayabalan, V.Balasubramanian: Optimizing the pulsed current GTAW parameters to attain maximum impact toughness, Materials and Manufacturing Processes23 (2008), No. 1, pp. 697310.1080/10426910701524584Suche in Google Scholar

9 T.Teker, T.Kursun: Weldability of AISI 430/AISI 1030 steel couples via the synergic controlled pulsed (GMAW-P) and manual gas metal arc (GMAW) welding techniques, Materials and Manufacturing Processes26 (2011), No. 7, pp. 92693210.1080/10426914.2011.551909Suche in Google Scholar

10 P. P.Lean, L.Gilb, A.Urena: Dissimilar welds between unreinforced AA6082 and AA6092/SiC/25p composite by pulsed-MIG arc welding using unreinforced filler alloys (Al-5Mg and Al-5Si), Journal of Materials Processing Technology143–144 (2003), pp. 84685010.1016/S0924-0136(03)00331-5Suche in Google Scholar

11 P. K.Pal, S. K.Pal: Effect of pulse parameters on weld quality in pulsed gas metal arc welding: A review, Journal of Materials Enginering and Performance20 (2011), No. 6, pp. 91893110.1007/s11665-010-9717-ySuche in Google Scholar

12 T.Mohandas, G. MadhusudanReddy, B. SatishKumar: Heat-affected zone softening in high-strength low-alloy steels, Journal of Materials Processing Technology88 (1999), No. 1, pp. 28429410.1016/S0924-0136(98)00404-XSuche in Google Scholar

13 H.Tong, T.Ueyama, S.Harada, M.Ushio: Quality and productivity improvement in aluminium alloy thin sheet welding using alternating current pulsed metal inert gas welding system, Science and Technology of Welding and Joining6 (2001), No. 4, pp. 20320810.1179/136217101101538776Suche in Google Scholar

14 P. K.Palani, N.Murugan: Selection of parameters of pulsed current gas metal arc welding, Journal of Materials Processing Technology172 (2006), No. 1, pp. 11010.1016/j.jmatprotec.2005.07.013Suche in Google Scholar

15 P. K.Ghosh, S. G.Kulkarni, M.Kumar, H. K.Dhiman: Pulsed current GMAW for superior weld quality of austenitic stainless steel sheet, ISIJ International47 (2007), No. 1, pp. 13814510.2355/isijinternational.47.138Suche in Google Scholar

16 A.Joseph, D.Farson, D.Harwig, R.Richardson: Influence of GMAW-P current waveforms on heat ınput and weld bead shape, Science and Technology of Welding and Joining10 (2005), No. 3, pp. 31131810.1179/174329305X40624Suche in Google Scholar

17 P. K.Ghosh, S. R.Gupta, H. S.Randhawa: Characteristics of a pulsed-current, vertical-up gas metal arc weld in steel, Metallurgical and Materials Transactions A31 (2000), No. 9, pp. 2247225910.1007/s11661-000-0142-ySuche in Google Scholar

18 C. L. M.Silva, A.Scotti: The influence of double pulse on porosity formation in aluminum GMAW, Journal of Materials Processing Technology171 (2006), No. 3, pp. 36637210.1016/j.jmatprotec.2005.07.008Suche in Google Scholar

19 V. K.Goyal, P. K.Ghosh, J. S.Saini: Analytical studies on thermal behaviour and geometry of weld pool in pulsed current gas metal arc welding, Journal of Materials Processing Technology209 (2008), No. 3, pp. 1318133610.1016/j.jmatprotec.2008.03.035Suche in Google Scholar

20 E. B. F. dosSantos, R.Pistor: Pulse profile and metal transfer in pulsed gas metal arc welding: droplet formation, detachment and velocity, Science and Technology of Welding and Joining22 (2017), No. 7, pp. 62764110.1080/13621718.2017.1288889Suche in Google Scholar

21 M.Gouda, M.Takahashi, K.Ikeuchi: Microstructures of gas metal arc weld metal of 950 MPa class steel, Science and Technology of Welding and Joining10 (2005), No. 3, pp. 36937710.1179/174329305X40714Suche in Google Scholar

Published Online: 2018-07-03
Published in Print: 2018-02-02

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. SteBLife – A new short-time procedure for the calculation of S-N curves and failure probabilities
  5. Surface treatment for effective bonding in the sports industry
  6. Effect of different rotational speeds on mechanical and metallurgical properties of friction welded dissimilar steels
  7. Comparison of titanium and FGM dental implants with different coating types
  8. Weld quality and productivity of AISI 4140 steel welded by unpulsed and pulsed GMAW
  9. Corrosion behavior of Hastelloy® C–4® Ni–Cr–Mo–Fe alloys for coal gasification syngas plants
  10. Application of FactSage® thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition
  11. Röntgen- und Neutronentomographie am knöchernen Innenohr der Bartenwale
  12. Partial repair of thermally sprayed and sealed corrosion protection – Organic coating material or thermal spraying?
  13. Experimental study on solidification of Cu(II)-contaminated soil using red mud with cement and Ca(OH)2
  14. Tribological study of sintered iron based and copper based brake materials by pin-on-disc method
  15. Influence of drilling parameters on temperature and surface roughness of AISI O2 steel
  16. Multi-fractal characteristics of particle size distribution of granular backfilling materials under different loads
  17. Dry sliding behavior of aluminum alloy 8011 with 4 % fly ash
  18. Optimization of the milling parameters for an Al/Si3N4 functionally graded composite using grey relational analysis
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111136/html
Button zum nach oben scrollen