Home Technology Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
Article
Licensed
Unlicensed Requires Authentication

Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers

  • Saad M. Aldosari , Usama A. Khashaba , Mostafa A. Hamed and Hassan S. Hedia
Published/Copyright: November 20, 2014
Become an author with De Gruyter Brill

Abstract

The weight and fuel savings offered by composite materials make them attractive not only to the military, but also to the civilian aircraft, space, and automobile industries. In these industries, bolted and riveted joints are extensively used as a primary method for structural joining. Bolted joints in composite materials have complex failure modes, and hence the demand for improving their performance exists. The main objective of this work is to improve the performance of bolted joints in composite structures by introducing nanoparticles/fibers around the expected failure zone. The literature on this issue showed shortcomings in the investigations of such materials. Most of the investigations in this field aimed to enhance the mechanical properties of epoxy materials, which cannot be used alone for high performance structural applications due to their low mechanical properties. In the present work, epoxy resin was modified with different types of nanofillers including multi walled carbon nanotubes (MWCNT). Nano-phased epoxy was used to fabricate different types of nanocomposites as well as nano-hybridized glass fiber reinforced composite laminates. Therefore, six different advanced materials were fabricated including a nanocomposite material (MWCNT/E), a quasi-isotropic nano-hybridized composite laminate (QI-GFR/MWCNT/E), a unidirectional nano-hybridized composite laminate (UD-GFR/MWCNT/E) and a control panel manufactured without nano-fillers (neat epoxy, QI-GFR/E, UD-GFR/E). The materials were characterized by tension and compression tests. The obtained properties are essential for the validation of respective finite element analysis. The results showed improvements in the tensile and compressive properties (strength and modulus) of the fabricated nanocomposites (MWCNT/E) compared with neat epoxy. The hybridized composite laminate with MWCNT showed high improvements in their mechanical properties compared to the composite laminates without nanofillers.

Kurzfassung

Die Gewichts- und Kraftstoffeinsparungen, die sich durch Kompositwerkstoffe anbieten, machen sie nicht nur für die Wehrtechnik, sondern auch für die zivile Luftfahrtindustrie, die Raumfahrtindustrie und den Automobilbau attraktiv. In diesen Branchen werden Niet- und Bolzenverbindungen breitflächig als grundlegendes Verfahren für Strukturverbindungen genutzt. Bolzenverbindungen können in Kompositwerkstoffen komplexe Versagensmechanismen aufweisen, und deshalb besteht eine Forderung nach Verbesserung ihrer Leistungsfähigkeit. Das Hauptziel der diesem Beitrag zugrundeliegenden Forschungsarbeiten besteht darin, die Performanz von Bolzenverbindungen in Kompositstrukturen durch die Einbringung von Nanopartikeln und -fasern rund um eine zu erwartende Bruchzone zu verbessern. Die Literatur zu diesem Thema zeigt einige Defizite in der Untersuchung solcher Werkstoffe. Die meisten Untersuchungen auf diesem Gebiet werden angestellt, um die mechanischen Eigenschaften der Epoxidmaterialien zu steigern, die aber aufgrund ihrer allgemein niedrigen mechanischen Eigenschaften nicht allein für Hochleistungsstrukturen verwendet werden können. In den zugrunde liegenden Forschungsarbeiten wurde ein Epoxidharz mit verschiedenen Arten von Nano-Füllern einschließlich Multi-Walled Carbon Nanotubes (MWCNT) modifiziert. Das nano-phasige Epoxid wurde verwendet, um verschiedene Typen von Nanokompositen sowie nano-hybridisierte glasfaserverstärkte Kompositlaminate herzustellen. Es wurden daher vier verschiedene Materialien hergestellt, und zwar ein Nanokompositwerkstoff (Nano-Composite Material (MWCNT/E)), ein quasi-isotropisches nano-hybridisiertes Kompositlaminat (Quasi-Isotropic Nano-Hybridized Composite Laminate (QI-GFR/MWCNT/E)), ein unidirektionales nano-hybridisiertes Kompositlaminat (Unidirectional Nano-Hybridized Composite Laminates (UD-GFR/MWCNT/E)) und eine Kontrollplatte ohne Nano-Füller (Neat Epoxy, QI-GFR/E, UD-GFR/E). Die Werkstoffe wurden mittels Zug- und Druckversuchen charakterisiert. Die damit bestimmten Eigenschaften sind für die Validierung von Finite-Elemente-Analysen essentiell. Die Ergebnisse zeigten Verbesserungen in der Zug- und Druckfestigkeit sowie in den entsprechenden Modulen bei den so hergestellten Nanokompositen gegenüber dem reinen Epoxid.


*Correspondence Address, Prof. Dr. Hassan Hedia, Professor of Mechanical Engineering, Consultant of the University Vice President, Vice President Office, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia. E-mail:

Assist. Prof. Dr. Saad M. Aldousari, born 1956, is Assistant Professor at King Abdulaziz University (KAU) in Jeddah, Saudi Arabia. He received his BSc in 1980 from the Department of Mechanical Engineering, College of Engineering, KAU, and his MSc and PhD from Bradford University, United Kingdom. His field of interest is manufacturing technology.

Prof. Dr. Usama A. Khashaba, born 1962, received his BSc, MSc and PhD degrees in Mechanical Engineering from Zagazig University, Zagazig, Egypt, in 1985, 1989 and 1993, respectively. Since 1985 he has been Teaching Assistant, Lecturer, Assistant Professor and Associate Professor. Since 2004, he is Professor for Composite Materials at King Abdulaziz University (KAU) in Jeddah, Saudi Arabia.

Prof. Dr. Mostafa A. Hamed, born 1950, is Professor for Applied Mechanics and Stress Analysis in the Department of Mechanical Engineering, King Abdulaziz University, Jeddah, Saudi Arabia. He received his BSc and MSc in Mechanical Engineering from Cairo Universty, Egypt, and his PhD in Mechanical Engineering from University of South Carolina, USA, in 1973, 1977 and 1981, respectively. His research interests include non-destructive testing by ultrasound, mechanical systems modeling and simulations, fracture mechanics as well as nano-material characterization.

Prof. Dr. Hassan S. Hedia, born in 1959, is Professor for Materials and Solid Mechanics at King Abdulaziz University, Jeddah, Saudi Arabia. In 1981, achieved his BSc in Mechanical Engineering at Cairo University, Egypt and in 1989 his MSc in Production Engineering at Mansoura University, Egypt. In 1996, he achieved his PhD in the Mechanical Engineering Department at Leeds University, UK, and at Mansoura University, Egypt, within the channel system. His field of interest is advanced materials, fracture mechanics, stress analysis as well as biomechanics.


References

1 N.Chisholm, H.Mahfuz, V. K.Rangari, A.Ashfaq, S.Jeelani: Fabrication and mechanical characterization of carbon/SiC epoxy nanocomposites, Composite Structures67 (2005), pp. 11512410.1016/j.compstruct.2004.01.010Search in Google Scholar

2 K.Tao, S.Yang, J. C.Grunlan, Y. S.Kim, B.Dang, Y.Deng, R. L.Thomas, B. L.Wilson, X.Wei: Effects of Carbon Nanotube Fillers on the Curing Processes of Epoxy Resin-Based Composites, J. Applied Polymer Science102 (2006), pp. 52485254 DOI:10.1002/app.24773Search in Google Scholar

3 M. A.Megahed, A. A.Megahed, H. E. M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid: Nano-Reinforcement Effects on Tensile Properties of Epoxy Resin, Proc. of the Int. Conf. MEATIP5, Assiut University, Egypt (2011), pp. 123135Search in Google Scholar

4 X.Zhou, E.Shin, K. W.Wang, C. E.Bakis: Interfacial damping characteristics of carbon nanotube-based composites, Composites Science and Technology64 (2004), pp. 24252437 DOI:10.1016/j.compscitech.2004.06.001Search in Google Scholar

5 S.Bal: Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Materials and Design31 (2010), pp. 24062413 DOI:10.1016/j.matdes.2009.11.058Search in Google Scholar

6 N.Hu, Y.Li, T.Nakamura, T.Katsumata, T.Koshikawa, M.Arai: Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates, Composites Part B43 (2012), pp. 3910.1016/j.compositesb.2011.04.022Search in Google Scholar

7 S. U.Khan, C. Y.Li, N. A.Siddiqui, J. K.Kim: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes, Composites Science and Technology71 (2011), pp. 14861494 DOI:10.1016/j.compscitech.2011.03.022Search in Google Scholar

8 Y.Zhou, F.Pervin, S.Jeelani, P. K.Mallick: Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers, J. Materials Processing Technology198 (2008), pp. 44545310.1016/j.jmatprotec.2007.07.028Search in Google Scholar

9 P. R.Mantena, A.Al-Ostaz, A. H. D.Cheng: Dynamic response and simulations of nanoparticle-enhanced composites, Composites Science and Technology69 (2009), pp. 77277910.1016/j.compscitech.2008.02.035Search in Google Scholar

10 M. R.Ayatollahi, S.Shadlou, M. M.Shokrieh: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Materials and Design32 (2011), pp. 21152124 DOI:10.1016/j.matdes.2010.11.034Search in Google Scholar

11 L.Sun, G. L.Warren, J. Y.O'Reilly, W. N.Everett, S. M.Lee, D.Davis, D.Lagoudas, H. J.Sue: Mechanical properties of surface-functionalized SWCNT/epoxy composites, Carbon (2008), pp. 320328Search in Google Scholar

12 R. F.Gibson, E O.Ayorinde, Y. F.Wen: Vibrations of carbon nanotubes and their composites: A review, Composites Science and Technology67 (2007), pp. 128 DOI:10.1016/j.compscitech.2006.03.031Search in Google Scholar

13 D.Qian, C.Dickey, R.Andrews, T.Rantell: Load transfer and deformation mechanism in carbon nanotube-polystyrene composites, Appl. Phys. Lett.76 (2000), No. 20, pp. 2868287010.1063/1.126500Search in Google Scholar

14 C.Velasco-Santos, A. L.Martinez-Hernandez, F.Fisher, R.Ruoff, V. M.Castano: Dynamic mechanical and thermal analysis of carbon nanotube-methylethylmethacrylate nanocomposites, J. Phys. D.36(01/2003), pp. 14231428 DOI:10.1088/0022-3727/36/12/311Search in Google Scholar

15 F. L.Jin, S. J.Park: Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability97 (2012), pp. 2148215310.1016/j.polymdegradstab.2012.08.015Search in Google Scholar

16 W.Jiang, F. L.Jin, S. J.Park: Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles, Journal of Industrial and Engineering Chemistry18 (2012), pp. 59459610.1016/j.jiec.2011.11.140Search in Google Scholar

17 M. S.Goyat, S.Ray, P. K.Ghosh: Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties, Composites Part A42 (2011), pp. 14211431 DOI:10.1016/j.compositesa.2011.06.006Search in Google Scholar

18 O.Akinyede, R.Mohan, A.Kelkar, J.Sankar: Static and fatigue behavior of epoxy/fiberglass composites hybridized with alumina nanoparticles, J. Composite Materials43 (2009), pp. 769781 DOI:10.1177/0021998309101294Search in Google Scholar

19 H.Zhao, R. K. Y.Li: Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites, Composites Part A39 (2008), pp. 602611 DOI:10.1016/j.polymertesting.2012.06.001Search in Google Scholar

20 C.Ocando, A.Tercjak, I.Mondragon: Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites, Composites Science and Technology70 (2010), pp. 11061112 DOI:10.1016/j.compscitech.2010.02.020Search in Google Scholar

21 S. H.Lim, K. Y.Zeng, C. B.He: Morphology, tensile and fracture characteristics of epoxy-alumina nanocomposites, Materials Science and Engineering A527 (2010), pp. 56705676 DOI:10.1016/j.msea.2010.05.038Search in Google Scholar

22 D. K.Shukla, S. V.Kasisomayajula, V.Parameswaran: Epoxy composites using functionalized alumina platelets as reinforcements, Composites Science and Technology68 (2008), pp. 30553063 DOI:10.1016/j.compscitech.2008.06.025Search in Google Scholar

23 M. F.Uddin, C. T.Sun: Improved dispersion and mechanical properties of hybrid nanocomposites, Composites Science and Technology70 (2010), pp. 223230 DOI:10.1016/j.compscitech.2009.09.017Search in Google Scholar

24 B.Bittmann, F.Haupert, A. K.Schlarb: Ultrasonic dispersion of inorganic nanoparticles in epoxy resin, Ultrasonics Sonochemistry16 (2009), pp. 62262810.1016/j.ultsonch.2009.01.006Search in Google Scholar PubMed

25 D. I.Tee, M.Mariatti, A.Azizan, C. H.See, K. F.Chong: Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites, Composites Science and Technology67 (2007), pp. 25842591 DOI:10.1016/j.compscitech.2006.12.007Search in Google Scholar

26 C.Chen, R. S.Justice, D. W.Schaefer, J. W.Baur: Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties, Polymer49 (2008), pp. 3805381510.1016/j.polymer.2008.06.023Search in Google Scholar

27 H. E. M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid, A. A.Megahed, M. A.Megahed: Ultrasonic mixing of nanoparticles in epoxy resin, Proc. of the Int. Conf. on Nano-Technology for Green and Sustainable Construction, Cairo, Egypt (2010), pp. 312316Search in Google Scholar

28 N.Lachman, H. D.Wagner: Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites, Composites Part A41 (2010), pp. 10931098 DOI:10.1016/j.compositesa.2009.08.023Search in Google Scholar

29 S.Ganguli, H.Aglan, P.Dennig, G.Irvin: Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites, Journal of Reinforced Plastics and Composites25 (2006), pp. 175188 DOI:10.1177/0731684405056425Search in Google Scholar

30 J. P.Yang, Z. K.Chen, Q. P.Feng, Y. H.Deng, Y.Li, Q. Q.Ni, S. Y.Yu: Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone), Composites Part B43 (2012), pp. 222610.1016/j.compositesb.2011.04.025Search in Google Scholar

31 F.Mujika, G.Vargas, J.Ibarretxe, J.De Gracia, A.Arrese: Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites, Composites Part B43 (2012), pp. 13361340 DOI:10.1016/j.compositesb.2011.11.020Search in Google Scholar

32 V. K.Srivastava: Modeling and mechanical performance of carbon nanotube/epoxy resin composites, Materials and Design39 (2012), pp. 432436 DOI:10.1016/j.matdes.2012.02.039Search in Google Scholar

33 M. R.Loos, J.Yang, D. L.Feke, I.Manas-Zloczower: Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems, Composites Science and Technology72 (2012), pp. 482488 DOI:10.1016/j.compscitech.2011.11.034Search in Google Scholar

34 H. C.Kim, S. K.Kim, J. T.Kim, K. Y.Rhee, J.Kathi: The Effect of Different Treatment Methods of Multiwalled Carbon Nanotubes on Thermal and Flexural Properties of Their Epoxy Nanocomposites, J. Polymer Science Part B: Polymer Physics48 (2010), pp. 1175118410.1002/polb.22007Search in Google Scholar

35 R. M.Lin, C.Lub: Modeling of interfacial friction damping of carbon nanotube-based nanocomposites, Mechanical Systems and Signal Processing24 (2010), pp. 29963012 DOI:10.1016/j.ymssp.2010.06.003Search in Google Scholar

36 M.Tanahashi: Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials3 (2010), pp. 1593161910.3390/ma3031593Search in Google Scholar

37 A.Montazeri, N.Montazeri: Viscoelastic and mechanical properties of multiwalled carbon nanotube/epoxy composites with different nanotube content, Materials and Design32 (2011), pp. 2301230710.1016/j.matdes.2010.11.003Search in Google Scholar

38 S.Yang, W.Lin, Y.Huang, H.Tien, J.Wang, C. M.Ma, S.Li, Y.Wang: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon49 (2011), pp. 793803 DOI:10.1016/j.memsci.2013.07.064Search in Google Scholar

39 M.Theodore, M.Hosur, J.Thomas, S.Jeelani: Influence of functionalization on properties of MWCNT-epoxy nanocomposites, Materials Science and Engineering A528 (2011), pp. 1192120010.1016/j.msea.2010.09.095Search in Google Scholar

40 A.Martone, C.Formicola, M.Giordano, M.Zarrelli: Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites, Composites Science and Technology70 (2010), pp. 11541160 DOI:10.1016/j.compscitech.2010.03.001Search in Google Scholar

41 J. S.Jang, J.Varischetti, G. W.Lee, J.Suhr: Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites, Composites Part A42 (2011), pp. 98103 DOI:10.1016/j.compositesa.2010.10.008Search in Google Scholar

42 A.Martone, C.Formicola, F.Piscitelli, M.Lavorgna, M.Zarrelli, V.Antonucci, M.Giordano: Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing, J. Express Polymer Letters6 (2012), pp. 52053110.3144/expresspolymlett.2012.56Search in Google Scholar

43 J. L.Tsai, M. D.Wu: Organoclay effect on mechanical responses of glass/epoxy nanocomposites, Compos. Mater.6 (2008), pp. 553568 DOI:10.1177/0021998307087514Search in Google Scholar

44 S.Zhao, L. S.Schadler, R.Duncan, H.Hillborg, T.Auletta: Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy, Composites Science and Technology68 (2008), pp. 29652975 DOI:10.1016/j.compscitech.2008.01.009Search in Google Scholar

45 O.Asi: Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles, J. Reinforced Plastics and Composites28 (2009), pp. 2861286710.1177/0731684408093975Search in Google Scholar

46 A.Alva, A.Raja: Dynamic characteristics of epoxy hybrid nanocomposites, Journal of Reinforced Plastics and Composites30 (2011), pp. 18571867 DOI:10.1177/0731684411429394Search in Google Scholar

47 R. M.Rodgers, H.Mahfuz, V. K.Rangari, S.Jeelani, L.Carlsson: Tensile response of SiC nanoparticles reinforced epoxy composites at room and elevated temperatures, Proc. of the 16th Int. Conf. Composite Materials, Kyoto Japan (2007), pp. 16Search in Google Scholar

48 I. E.Sawi, P. A.Olivier, P.Demont, H.Bougherara: Investigation of the effect of double-walled carbon nanotubes on the curing reaction kinetics and shear flow of an epoxy resin, Journal of Applied Polymer Science126 (2012), pp. 358366 DOI:10.1002/app.36988Search in Google Scholar

49 J. P.Pascault, R. J. J.Williams: Epoxy Polymers – New Materials and Innovations, Wiley-VCH Verlag, Weinheim, Germany (2010)10.1002/9783527628704Search in Google Scholar

50 M.Preghenella, A.Pegoretti, C.Migliaresi: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites, Polymer46 (2005), pp. 1206512072 DOI:10.1016/j.polymer.2005.10.098Search in Google Scholar

51 T.Zhou, X.Wang, T.Wang: Cure reaction of multiwalled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: Effect of carboxylic functionalization of MWCNTs, Polym. Int.58 (2009), pp. 445452 DOI:10.1002/pi.2558Search in Google Scholar

52 U. A.Khashaba: On the mechanical behavior of [0, +45, 90, −45, 0] glass/polyester laminate, Proc. of 1st Int. Conf. on Mech. Eng. Adv. Tech. for Indus. Prod., Assiut University, Egypt (1994), pp. 289301Search in Google Scholar

53 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned joints composite laminates: Effects of stacking sequences, Composites Part B45 (2012), pp. 16941703 DOI:10.1177/ 0021998312457196Search in Google Scholar

54 U. A.Khashaba, A. I.Selmy, I. A.El-Sonbaty, M.Megahed: Behavior of notched and unnotched [0/± 30/± 60/90]s GFR/epoxy composites under static and fatigue loads, J. Composite Structures81 (2007), pp. 606613 DOI:10.1016/j.compstruct.2006.11.005Search in Google Scholar

55 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned joints composite laminates: Effects of pin-hole clearance, J. Composite Materials47, No. 18 (2012), pp. 22872298 DOI:10.1177/ 0021998312457196Search in Google Scholar

56 U. A.Khasaba, T. A.Sebaey, F. F.Mahmoud, A. I.Selmy, R. M.Hamouda: Experimental and numerical analysis of pinned joints composite laminates: Effects of stacking sequences, accepted for publication, J. Composite Materials46 (2012), pp. 13451355 DOI:10.1177/0021998312464891Search in Google Scholar

57 R. A.Chaudhuri, K.Balaraman: A novel method for fabrication of fiber reinforced plastic laminated plates, Composite Structures77 (2007), pp. 160170 DOI:10.1016/j.compstruct.2005.06.010Search in Google Scholar

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
  5. Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
  6. Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
  7. Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
  8. Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
  9. Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
  10. Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
  11. Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
  12. Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
  13. Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
  14. The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
  15. The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
  16. Behavior of Chopped Strand Mat and Woven Roving under Bending
  17. Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
  18. Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
  19. Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
  20. Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
  21. Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
  22. Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
  23. Optimization of Screw Elements by Genetic Algorithm
  24. Vorschau/Preview
  25. Vorschau
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110668/html
Scroll to top button