Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
-
Saad M. Aldosari
, Usama A. Khashaba , Mostafa A. Hamed and Hassan S. Hedia
Abstract
The weight and fuel savings offered by composite materials make them attractive not only to the military, but also to the civilian aircraft, space, and automobile industries. In these industries, bolted and riveted joints are extensively used as a primary method for structural joining. Bolted joints in composite materials have complex failure modes, and hence the demand for improving their performance exists. The main objective of this work is to improve the performance of bolted joints in composite structures by introducing nanoparticles/fibers around the expected failure zone. The literature on this issue showed shortcomings in the investigations of such materials. Most of the investigations in this field aimed to enhance the mechanical properties of epoxy materials, which cannot be used alone for high performance structural applications due to their low mechanical properties. In the present work, epoxy resin was modified with different types of nanofillers including multi walled carbon nanotubes (MWCNT). Nano-phased epoxy was used to fabricate different types of nanocomposites as well as nano-hybridized glass fiber reinforced composite laminates. Therefore, six different advanced materials were fabricated including a nanocomposite material (MWCNT/E), a quasi-isotropic nano-hybridized composite laminate (QI-GFR/MWCNT/E), a unidirectional nano-hybridized composite laminate (UD-GFR/MWCNT/E) and a control panel manufactured without nano-fillers (neat epoxy, QI-GFR/E, UD-GFR/E). The materials were characterized by tension and compression tests. The obtained properties are essential for the validation of respective finite element analysis. The results showed improvements in the tensile and compressive properties (strength and modulus) of the fabricated nanocomposites (MWCNT/E) compared with neat epoxy. The hybridized composite laminate with MWCNT showed high improvements in their mechanical properties compared to the composite laminates without nanofillers.
Kurzfassung
Die Gewichts- und Kraftstoffeinsparungen, die sich durch Kompositwerkstoffe anbieten, machen sie nicht nur für die Wehrtechnik, sondern auch für die zivile Luftfahrtindustrie, die Raumfahrtindustrie und den Automobilbau attraktiv. In diesen Branchen werden Niet- und Bolzenverbindungen breitflächig als grundlegendes Verfahren für Strukturverbindungen genutzt. Bolzenverbindungen können in Kompositwerkstoffen komplexe Versagensmechanismen aufweisen, und deshalb besteht eine Forderung nach Verbesserung ihrer Leistungsfähigkeit. Das Hauptziel der diesem Beitrag zugrundeliegenden Forschungsarbeiten besteht darin, die Performanz von Bolzenverbindungen in Kompositstrukturen durch die Einbringung von Nanopartikeln und -fasern rund um eine zu erwartende Bruchzone zu verbessern. Die Literatur zu diesem Thema zeigt einige Defizite in der Untersuchung solcher Werkstoffe. Die meisten Untersuchungen auf diesem Gebiet werden angestellt, um die mechanischen Eigenschaften der Epoxidmaterialien zu steigern, die aber aufgrund ihrer allgemein niedrigen mechanischen Eigenschaften nicht allein für Hochleistungsstrukturen verwendet werden können. In den zugrunde liegenden Forschungsarbeiten wurde ein Epoxidharz mit verschiedenen Arten von Nano-Füllern einschließlich Multi-Walled Carbon Nanotubes (MWCNT) modifiziert. Das nano-phasige Epoxid wurde verwendet, um verschiedene Typen von Nanokompositen sowie nano-hybridisierte glasfaserverstärkte Kompositlaminate herzustellen. Es wurden daher vier verschiedene Materialien hergestellt, und zwar ein Nanokompositwerkstoff (Nano-Composite Material (MWCNT/E)), ein quasi-isotropisches nano-hybridisiertes Kompositlaminat (Quasi-Isotropic Nano-Hybridized Composite Laminate (QI-GFR/MWCNT/E)), ein unidirektionales nano-hybridisiertes Kompositlaminat (Unidirectional Nano-Hybridized Composite Laminates (UD-GFR/MWCNT/E)) und eine Kontrollplatte ohne Nano-Füller (Neat Epoxy, QI-GFR/E, UD-GFR/E). Die Werkstoffe wurden mittels Zug- und Druckversuchen charakterisiert. Die damit bestimmten Eigenschaften sind für die Validierung von Finite-Elemente-Analysen essentiell. Die Ergebnisse zeigten Verbesserungen in der Zug- und Druckfestigkeit sowie in den entsprechenden Modulen bei den so hergestellten Nanokompositen gegenüber dem reinen Epoxid.
References
1 N.Chisholm, H.Mahfuz, V. K.Rangari, A.Ashfaq, S.Jeelani: Fabrication and mechanical characterization of carbon/SiC epoxy nanocomposites, Composite Structures67 (2005), pp. 115–12410.1016/j.compstruct.2004.01.010Search in Google Scholar
2 K.Tao, S.Yang, J. C.Grunlan, Y. S.Kim, B.Dang, Y.Deng, R. L.Thomas, B. L.Wilson, X.Wei: Effects of Carbon Nanotube Fillers on the Curing Processes of Epoxy Resin-Based Composites, J. Applied Polymer Science102 (2006), pp. 5248–5254 DOI:10.1002/app.24773Search in Google Scholar
3 M. A.Megahed, A. A.Megahed, H. E. M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid: Nano-Reinforcement Effects on Tensile Properties of Epoxy Resin, Proc. of the Int. Conf. MEATIP5, Assiut University, Egypt (2011), pp. 123–135Search in Google Scholar
4 X.Zhou, E.Shin, K. W.Wang, C. E.Bakis: Interfacial damping characteristics of carbon nanotube-based composites, Composites Science and Technology64 (2004), pp. 2425–2437 DOI:10.1016/j.compscitech.2004.06.001Search in Google Scholar
5 S.Bal: Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Materials and Design31 (2010), pp. 2406–2413 DOI:10.1016/j.matdes.2009.11.058Search in Google Scholar
6 N.Hu, Y.Li, T.Nakamura, T.Katsumata, T.Koshikawa, M.Arai: Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates, Composites Part B43 (2012), pp. 3–910.1016/j.compositesb.2011.04.022Search in Google Scholar
7 S. U.Khan, C. Y.Li, N. A.Siddiqui, J. K.Kim: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes, Composites Science and Technology71 (2011), pp. 1486–1494 DOI:10.1016/j.compscitech.2011.03.022Search in Google Scholar
8 Y.Zhou, F.Pervin, S.Jeelani, P. K.Mallick: Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers, J. Materials Processing Technology198 (2008), pp. 445–45310.1016/j.jmatprotec.2007.07.028Search in Google Scholar
9 P. R.Mantena, A.Al-Ostaz, A. H. D.Cheng: Dynamic response and simulations of nanoparticle-enhanced composites, Composites Science and Technology69 (2009), pp. 772–77910.1016/j.compscitech.2008.02.035Search in Google Scholar
10 M. R.Ayatollahi, S.Shadlou, M. M.Shokrieh: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Materials and Design32 (2011), pp. 2115–2124 DOI:10.1016/j.matdes.2010.11.034Search in Google Scholar
11 L.Sun, G. L.Warren, J. Y.O'Reilly, W. N.Everett, S. M.Lee, D.Davis, D.Lagoudas, H. J.Sue: Mechanical properties of surface-functionalized SWCNT/epoxy composites, Carbon (2008), pp. 320–328Search in Google Scholar
12 R. F.Gibson, E O.Ayorinde, Y. F.Wen: Vibrations of carbon nanotubes and their composites: A review, Composites Science and Technology67 (2007), pp. 1–28 DOI:10.1016/j.compscitech.2006.03.031Search in Google Scholar
13 D.Qian, C.Dickey, R.Andrews, T.Rantell: Load transfer and deformation mechanism in carbon nanotube-polystyrene composites, Appl. Phys. Lett.76 (2000), No. 20, pp. 2868–287010.1063/1.126500Search in Google Scholar
14 C.Velasco-Santos, A. L.Martinez-Hernandez, F.Fisher, R.Ruoff, V. M.Castano: Dynamic mechanical and thermal analysis of carbon nanotube-methylethylmethacrylate nanocomposites, J. Phys. D.36(01/2003), pp. 1423–1428 DOI:10.1088/0022-3727/36/12/311Search in Google Scholar
15 F. L.Jin, S. J.Park: Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability97 (2012), pp. 2148–215310.1016/j.polymdegradstab.2012.08.015Search in Google Scholar
16 W.Jiang, F. L.Jin, S. J.Park: Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles, Journal of Industrial and Engineering Chemistry18 (2012), pp. 594–59610.1016/j.jiec.2011.11.140Search in Google Scholar
17 M. S.Goyat, S.Ray, P. K.Ghosh: Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties, Composites Part A42 (2011), pp. 1421–1431 DOI:10.1016/j.compositesa.2011.06.006Search in Google Scholar
18 O.Akinyede, R.Mohan, A.Kelkar, J.Sankar: Static and fatigue behavior of epoxy/fiberglass composites hybridized with alumina nanoparticles, J. Composite Materials43 (2009), pp. 769–781 DOI:10.1177/0021998309101294Search in Google Scholar
19 H.Zhao, R. K. Y.Li: Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites, Composites Part A39 (2008), pp. 602–611 DOI:10.1016/j.polymertesting.2012.06.001Search in Google Scholar
20 C.Ocando, A.Tercjak, I.Mondragon: Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites, Composites Science and Technology70 (2010), pp. 1106–1112 DOI:10.1016/j.compscitech.2010.02.020Search in Google Scholar
21 S. H.Lim, K. Y.Zeng, C. B.He: Morphology, tensile and fracture characteristics of epoxy-alumina nanocomposites, Materials Science and Engineering A527 (2010), pp. 5670–5676 DOI:10.1016/j.msea.2010.05.038Search in Google Scholar
22 D. K.Shukla, S. V.Kasisomayajula, V.Parameswaran: Epoxy composites using functionalized alumina platelets as reinforcements, Composites Science and Technology68 (2008), pp. 3055–3063 DOI:10.1016/j.compscitech.2008.06.025Search in Google Scholar
23 M. F.Uddin, C. T.Sun: Improved dispersion and mechanical properties of hybrid nanocomposites, Composites Science and Technology70 (2010), pp. 223–230 DOI:10.1016/j.compscitech.2009.09.017Search in Google Scholar
24 B.Bittmann, F.Haupert, A. K.Schlarb: Ultrasonic dispersion of inorganic nanoparticles in epoxy resin, Ultrasonics Sonochemistry16 (2009), pp. 622–62810.1016/j.ultsonch.2009.01.006Search in Google Scholar PubMed
25 D. I.Tee, M.Mariatti, A.Azizan, C. H.See, K. F.Chong: Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites, Composites Science and Technology67 (2007), pp. 2584–2591 DOI:10.1016/j.compscitech.2006.12.007Search in Google Scholar
26 C.Chen, R. S.Justice, D. W.Schaefer, J. W.Baur: Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties, Polymer49 (2008), pp. 3805–381510.1016/j.polymer.2008.06.023Search in Google Scholar
27 H. E. M.Sallam, U. A.Khashaba, M. A.Seif, M.Abd-Elhamid, A. A.Megahed, M. A.Megahed: Ultrasonic mixing of nanoparticles in epoxy resin, Proc. of the Int. Conf. on Nano-Technology for Green and Sustainable Construction, Cairo, Egypt (2010), pp. 312–316Search in Google Scholar
28 N.Lachman, H. D.Wagner: Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites, Composites Part A41 (2010), pp. 1093–1098 DOI:10.1016/j.compositesa.2009.08.023Search in Google Scholar
29 S.Ganguli, H.Aglan, P.Dennig, G.Irvin: Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites, Journal of Reinforced Plastics and Composites25 (2006), pp. 175–188 DOI:10.1177/0731684405056425Search in Google Scholar
30 J. P.Yang, Z. K.Chen, Q. P.Feng, Y. H.Deng, Y.Li, Q. Q.Ni, S. Y.Yu: Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone), Composites Part B43 (2012), pp. 22–2610.1016/j.compositesb.2011.04.025Search in Google Scholar
31 F.Mujika, G.Vargas, J.Ibarretxe, J.De Gracia, A.Arrese: Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites, Composites Part B43 (2012), pp. 1336–1340 DOI:10.1016/j.compositesb.2011.11.020Search in Google Scholar
32 V. K.Srivastava: Modeling and mechanical performance of carbon nanotube/epoxy resin composites, Materials and Design39 (2012), pp. 432–436 DOI:10.1016/j.matdes.2012.02.039Search in Google Scholar
33 M. R.Loos, J.Yang, D. L.Feke, I.Manas-Zloczower: Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems, Composites Science and Technology72 (2012), pp. 482–488 DOI:10.1016/j.compscitech.2011.11.034Search in Google Scholar
34 H. C.Kim, S. K.Kim, J. T.Kim, K. Y.Rhee, J.Kathi: The Effect of Different Treatment Methods of Multiwalled Carbon Nanotubes on Thermal and Flexural Properties of Their Epoxy Nanocomposites, J. Polymer Science Part B: Polymer Physics48 (2010), pp. 1175–118410.1002/polb.22007Search in Google Scholar
35 R. M.Lin, C.Lub: Modeling of interfacial friction damping of carbon nanotube-based nanocomposites, Mechanical Systems and Signal Processing24 (2010), pp. 2996–3012 DOI:10.1016/j.ymssp.2010.06.003Search in Google Scholar
36 M.Tanahashi: Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials3 (2010), pp. 1593–161910.3390/ma3031593Search in Google Scholar
37 A.Montazeri, N.Montazeri: Viscoelastic and mechanical properties of multiwalled carbon nanotube/epoxy composites with different nanotube content, Materials and Design32 (2011), pp. 2301–230710.1016/j.matdes.2010.11.003Search in Google Scholar
38 S.Yang, W.Lin, Y.Huang, H.Tien, J.Wang, C. M.Ma, S.Li, Y.Wang: Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon49 (2011), pp. 793–803 DOI:10.1016/j.memsci.2013.07.064Search in Google Scholar
39 M.Theodore, M.Hosur, J.Thomas, S.Jeelani: Influence of functionalization on properties of MWCNT-epoxy nanocomposites, Materials Science and Engineering A528 (2011), pp. 1192–120010.1016/j.msea.2010.09.095Search in Google Scholar
40 A.Martone, C.Formicola, M.Giordano, M.Zarrelli: Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites, Composites Science and Technology70 (2010), pp. 1154–1160 DOI:10.1016/j.compscitech.2010.03.001Search in Google Scholar
41 J. S.Jang, J.Varischetti, G. W.Lee, J.Suhr: Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites, Composites Part A42 (2011), pp. 98–103 DOI:10.1016/j.compositesa.2010.10.008Search in Google Scholar
42 A.Martone, C.Formicola, F.Piscitelli, M.Lavorgna, M.Zarrelli, V.Antonucci, M.Giordano: Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube distributions obtained by solvent aided and direct mixing, J. Express Polymer Letters6 (2012), pp. 520–53110.3144/expresspolymlett.2012.56Search in Google Scholar
43 J. L.Tsai, M. D.Wu: Organoclay effect on mechanical responses of glass/epoxy nanocomposites, Compos. Mater.6 (2008), pp. 553–568 DOI:10.1177/0021998307087514Search in Google Scholar
44 S.Zhao, L. S.Schadler, R.Duncan, H.Hillborg, T.Auletta: Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy, Composites Science and Technology68 (2008), pp. 2965–2975 DOI:10.1016/j.compscitech.2008.01.009Search in Google Scholar
45 O.Asi: Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles, J. Reinforced Plastics and Composites28 (2009), pp. 2861–286710.1177/0731684408093975Search in Google Scholar
46 A.Alva, A.Raja: Dynamic characteristics of epoxy hybrid nanocomposites, Journal of Reinforced Plastics and Composites30 (2011), pp. 1857–1867 DOI:10.1177/0731684411429394Search in Google Scholar
47 R. M.Rodgers, H.Mahfuz, V. K.Rangari, S.Jeelani, L.Carlsson: Tensile response of SiC nanoparticles reinforced epoxy composites at room and elevated temperatures, Proc. of the 16th Int. Conf. Composite Materials, Kyoto Japan (2007), pp. 1–6Search in Google Scholar
48 I. E.Sawi, P. A.Olivier, P.Demont, H.Bougherara: Investigation of the effect of double-walled carbon nanotubes on the curing reaction kinetics and shear flow of an epoxy resin, Journal of Applied Polymer Science126 (2012), pp. 358–366 DOI:10.1002/app.36988Search in Google Scholar
49 J. P.Pascault, R. J. J.Williams: Epoxy Polymers – New Materials and Innovations, Wiley-VCH Verlag, Weinheim, Germany (2010)10.1002/9783527628704Search in Google Scholar
50 M.Preghenella, A.Pegoretti, C.Migliaresi: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites, Polymer46 (2005), pp. 12065–12072 DOI:10.1016/j.polymer.2005.10.098Search in Google Scholar
51 T.Zhou, X.Wang, T.Wang: Cure reaction of multiwalled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: Effect of carboxylic functionalization of MWCNTs, Polym. Int.58 (2009), pp. 445–452 DOI:10.1002/pi.2558Search in Google Scholar
52 U. A.Khashaba: On the mechanical behavior of [0, +45, 90, −45, 0] glass/polyester laminate, Proc. of 1st Int. Conf. on Mech. Eng. Adv. Tech. for Indus. Prod., Assiut University, Egypt (1994), pp. 289–301Search in Google Scholar
53 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned joints composite laminates: Effects of stacking sequences, Composites Part B45 (2012), pp. 1694–1703 DOI:10.1177/ 0021998312457196Search in Google Scholar
54 U. A.Khashaba, A. I.Selmy, I. A.El-Sonbaty, M.Megahed: Behavior of notched and unnotched [0/± 30/± 60/90]s GFR/epoxy composites under static and fatigue loads, J. Composite Structures81 (2007), pp. 606–613 DOI:10.1016/j.compstruct.2006.11.005Search in Google Scholar
55 U. A.Khasaba, T. A.Sebaey, K. A.Alnefaie: Failure and reliability analysis of pinned joints composite laminates: Effects of pin-hole clearance, J. Composite Materials47, No. 18 (2012), pp. 2287–2298 DOI:10.1177/ 0021998312457196Search in Google Scholar
56 U. A.Khasaba, T. A.Sebaey, F. F.Mahmoud, A. I.Selmy, R. M.Hamouda: Experimental and numerical analysis of pinned joints composite laminates: Effects of stacking sequences, accepted for publication, J. Composite Materials46 (2012), pp. 1345–1355 DOI:10.1177/0021998312464891Search in Google Scholar
57 R. A.Chaudhuri, K.Balaraman: A novel method for fabrication of fiber reinforced plastic laminated plates, Composite Structures77 (2007), pp. 160–170 DOI:10.1016/j.compstruct.2005.06.010Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
- Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
- Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
- Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
- Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
- Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
- Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
- Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
- Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
- Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
- The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
- The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
- Behavior of Chopped Strand Mat and Woven Roving under Bending
- Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
- Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
- Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
- Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
- Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
- Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
- Optimization of Screw Elements by Genetic Algorithm
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
- Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
- Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
- Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
- Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
- Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
- Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
- Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
- Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
- Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
- The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
- The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
- Behavior of Chopped Strand Mat and Woven Roving under Bending
- Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
- Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
- Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
- Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
- Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
- Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
- Optimization of Screw Elements by Genetic Algorithm
- Vorschau/Preview
- Vorschau