Home Technology Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
Article
Licensed
Unlicensed Requires Authentication

Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel

  • Hem Bahadur Motra , Jörg Hildebrand and Andrea Dimmig-Osburg
Published/Copyright: November 20, 2014
Become an author with De Gruyter Brill

Abstract

For the measurement of tensile properties of materials, specimens with a rectangular cross-section are commonly used. However, the results are affected by the size of the specimen and the orientations. In this study, the rectangular cross-section specimens in both longitudinal (strain ratio r = 0°) and transverse (strain ratio r = 90°) directions were used to investigate the influence of specimen and orientation on the tensile properties of I-profile of IPE360 and IPE400 steel grade S235. For both I-profiles, four types of sixty dog bone samples with varying dimensions were tested. An electromechanical test machine together with contacting strain gauge and extensometer was used to perform standard tensile test procedures. The conclusion is drawn that specimen dimensions and orientation have a significant influence on the mechanical properties of both I-profile structural steel such as Young's modulus of elasticity, upper and lower yield strength, tensile strength, post-necking elongation and strain hardening rate, which increase with increasing thickness or decreasing gauge length.

Kurzfassung

Proben mit rechteckigen Querschnitten werden häufig verwendet, um die mechanischen Eigenschaften von Werkstoffen zu ermitteln. Aber die Probengröße und die Orientierung können die Ergebnisse beeinflussen. In der diesem Beitrag zugrunde liegenden Studie wurde der Einfluss der Probe und ihre Orientierung auf die mechanischen Eigenschaften der I-Profile IPE 360 und IPE 400 der Stahlgüte S 235 untersucht, indem Proben mit rechteckigem Querschnitt in der Längsrichtung (Dehnungsverhältnis r = 0°) und der Querrichtung (Dehnungsverhältnis r = 90°) verwendet wurden. Vier Typen von insgesamt sechzig Dog-Bone-Proben mit variierenden Dimensionen wurden für beide I-Profile untersucht. Die Standard-Zugversuche wurden mittels einer elektromechanischen Prüfmaschine zusammen mit Kontaktdehnungsmessstreifen und Extensiometer durchgeführt. Es stellte sich heraus, dass sich für beide I-Profile aus dem Baustahl signifikante Einflüsse der Probendimensionen und -orientierung auf die mechanischen Eigenschaften, wie beispielsweise den Elastizitätsmodul, die untere und obere Streckgrenze, die Zugfestigkeit, die Einschnürdehnung und den Grad der Verfestigung ergeben. Alle Eigenschaften verbessern sich mit zunehmender Dicke und abnehmender Messstreifenlänge.


*Correspondence Address, MSc Hem Bahadur Motra, Graduiertenkolleg 1462 “Modellqualitäten”, Bauhaus-Universität Weimar, Berkaer Str. 9, 99423 Weimar. E-mail:

Hem Bahadur Motra, born 1981 in Nepal, graduated from Gottfried Wilhelm Leibniz University, Faculty of Civil Engineering, Hannover, Germany. Currently, he is working as a PhD student in the Research Training Group GRK 1462 “Assessment of Coupled Experimental and Numerical Partial Models in Structural Engineering”, Bauhaus-Universität Weimar, Germany.

Dr.-Ing. Jorg Hildebrand received his Dipl.-Ing. in Civil Engineering in 2001 and his PhD in Civil Engineering in 2008. He is Junior Professor at the Bauhaus-Universität Weimar, Germany, since 2010.

Dr.-Ing. Andrea Dimmig-Osburg graduated from the Technischen Universitat Merseburg, Faculty of Chemistry, Germany, in 1982. From 1982 to 1986, she worked as a research assistant in the Faculty of Chemistry, Friedrich Schiller Universitat in Jena, Germany. From 1986 to 1989, she worked in the lab at BMK Erfurt, Germany, and from 1989 to 1991 in Kombinates Mikroelektronik in Erfurt. From 1991 to 2003, she was a research assistant at Bauhaus-Universität in Weimar and completed her PhD at that universität in 2003. She continued working at that universität, from 2003 to 2010 as Junior Professor in the Faculty of Civil Engineering and since 2010 as Professor for polymer modified concrete.


References

1 Y. H.Zhao, Y. Z.Guo, Q.Wei, A. M.Dangelewicz, C.Xu, Y. T.Zhu, T. G.Langdon, Y. Z.Zhou, E. J.Lavernia: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu, Scripta Materialia59 (2008), pp. 627630 DOI:10.1016/j.scriptamat.2008.05.031Search in Google Scholar

2 J.Besson, L.Devillers-Guerville, A.Pineau: Modelling of scatter and size effect in ductile fracture: Application to thermal embrittlement of duplestainless steels, Engineering Fracture Mechanics67 (2000), pp. 169190 DOI:10.1016/S0013-7944(00)00056-4Search in Google Scholar

3 D.Kiener, W.Grosinger, G.Dehm, R.Pippan: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia2008 (56), pp. 580592 DOI:10.1016/j.actamat.2007.10.015Search in Google Scholar

4 A. V.Sergueeva, J.Zhou, B. E.Meacham, D. J.Branagan: Gage length and sample size effect on measured properties during tensile testing, Material Science and Engineering A526 (2009), pp. 7983 DOI:10.1016/j.msea.2009.07.046Search in Google Scholar

5 W. J.Yuan, Z. L.Zhang, Y. J.Su, L. J.Qiao, W. Y.Chu: Influence of specimen thickness with rectangular cross-section on the tensile properties of structural steels, Material Science and Engineering A532 (2012), pp. 601605 DOI:10.1016/j.msea.2011.11.021Search in Google Scholar

6 Y. H.Zhao, Y. Z.Guo, Q.Wei, T. D.Topping, A. M.Dangelewicz, Y. T.Zhu, T. G.Langdon, E. J.Lavernia: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves, Material Science and Engineering A525 (2009), pp. 6877 DOI:10.1016/j.msea.2009.06.031Search in Google Scholar

7 A.Morquio, J. D.Riera: Size and strain rate effects in steel structures, Engineering Structures26 (2004), pp. 669679 DOI:10.1016/j.engstruct.2004.01.007Search in Google Scholar

8 T. N.Goh, H. M.Shang: Effects of shape and size of tensile specimens on the stress-strain relationship of sheet metal. In: Journal of Mechanical Working Technology1 (1982), Vol. 7, pp. 2337Search in Google Scholar

9 A. M.Korsunsky, G. D.Nguyen, K.Kim: The analysis of deformation size effects using multiple gauge length extensometry and the essential work of rupture concept, Materials Science and Engineering A423 (2006), pp. 192198 DOI:10.1016/j.msea.2005.09.133Search in Google Scholar

10 H. B.Motra, Quality Assessment methods of Experimental model in Structural Engineering, Bauhaus-Universität Weimar, Dissertation (2014)Search in Google Scholar

11 R.Hill: A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London193 (1948), Series A, pp. 281297Search in Google Scholar

12 T. N.Goh: Effects of shape and size of tensile specimen on stress-strain relationship of sheet metal, Journal of Mechanical Working Technology7 (1982), pp. 2337 DOI:10.1016/0378-3804(82)90092-4Search in Google Scholar

13 M.Kuruvilla, T. S.Srivatsan, M.Perraroli, L.Park: An investigation of microstructure, hardness, tensile behavior of a titanium alloy: Role of orientation, Sadhana33 (2008) Part 3, pp. 235250Search in Google Scholar

14 J. W.Lee, S. N.Kim, M. G.Lee, F.Barlat: Evaluation of anisotropic yield functions characterized by uniaxial and biaxial experiments for formability of DP590 sheet steel, Proceedings of the 14th International ESAFORM Conference on Materials Forming, Northern Ireland, UK (2011), pp. 14581463Search in Google Scholar

15 J. D.Lord, R. M.Morrell: Elastic modulus measurement obtaining reliable data from the tensile test, Metrologia47 (2010), pp. 502515 DOI:10.1088/0026-1394/47/2/S05Search in Google Scholar

16 J. D.Lord, R. M.Morrell: Elastic Modulus Measurement NPL Good Practice Guide No. 98, 2006, ISSN 1744-3911Search in Google Scholar

17 H. B.Motra, J.Hildebrand, A.Dimmig-Osburg: Assessment of Strain Measurement Techniques to Characterize Mechanical Properties of Structural Steel, In: Engineering Science and Technology, an International Journal, in press (Available online 16 September 2014)DOI:10.1016/j.jestch.2014.07.006Search in Google Scholar

18 H. B.Motra, J.Hildebrand, A.Dimmig-Osburg: Influence of measurement uncertainties on results of creep prediction of concrete under cyclic loading, Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain (2013), pp. 805814Search in Google Scholar

19 H. B.Motra, A.Dimmig-Osburg, J.Hildebrand: Uncertainty quantication on creep deection of concrete beam subjected to cyclic loading. In: Proceedings of 11th International Conference on Structural Safety & Reliability, Columbia University, New York/USA, Taylor & Francis Group, London, pp. 51415147.10.1201/b16387-747Search in Google Scholar

20 ISO 6892-1:2009E: Metallic materials – Tensile testing, Part 1: Technique of test at room temperature, Beuth, Berlin, Germany (2009)Search in Google Scholar

21 Stahlwerk Thüringen GmbH, Qualitätsstelle, 07333 Unterwellenborn Deutschland, Pers. communicationSearch in Google Scholar

22 B. F.Dyson, M. S.Loveday, M. G.Gee (ed): Aspects of Materials Metrology and Standards for Structural Performance, Aspects of modulus measurements by G. D.Deaan, M. S.Loveday, P. M.Cooper, B. E.Read, B.Roebuck (1994) (London: Elsevier Applied Science) chapter 8Search in Google Scholar

23 M. A.Hailong, C.Chong, L.Xing, S.Zhanga: Study of high performance autoclaved shell-aggregate from propylene oxide sludge, Construction and Building Materials25 (2011), pp. 30303037 DOI:10.1016/j.conbuildmat.2011.01.006Search in Google Scholar

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
  5. Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
  6. Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
  7. Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
  8. Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
  9. Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
  10. Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
  11. Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
  12. Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
  13. Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
  14. The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
  15. The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
  16. Behavior of Chopped Strand Mat and Woven Roving under Bending
  17. Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
  18. Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
  19. Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
  20. Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
  21. Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
  22. Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
  23. Optimization of Screw Elements by Genetic Algorithm
  24. Vorschau/Preview
  25. Vorschau
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110659/html
Scroll to top button