Home Technology Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
Article
Licensed
Unlicensed Requires Authentication

Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits

  • Simone Schuster and Jens Gibmeier
Published/Copyright: November 20, 2014
Become an author with De Gruyter Brill

Abstract

In sheet metal forming, residual stress distributions are often accompanied by crystallographic texture. Incremental hole-drilling for stress analysis is only reliably applicable for isotropic materials. The objective of this study is to determine the influence of texture on residual stress analysis using conventional evaluation methods and to specify the application limits in case of textured material states. A systematic finite element simulation study for ideal texture orientations is conducted with respect to the strain gage rosette orientation. The results of the numerical investigations show that reliable stress analysis on strongly textured materials is not feasible using the existing evaluation method. The application limits are given for the application of commercially available evaluation software with respect to degree of anisotropy, stress state and strain gage orientation.

Kurzfassung

In der Blechumformung werden Eigenspannungsverteilungen oft von kristallographischer Textur begleitet. Das inkrementelle Bohrlochverfahren zur Spannungsanalyse ist nur für isotrope Materialien zuverlässig anwendbar. Das Ziel dieser Studie ist es, den Einfluss der Textur auf die Eigenspannungsanalyse mit herkömmlichen Bewertungsmethoden zu bestimmen und die Einsatzgrenzen im Falle von strukturierten Werkstoffzuständen zu spezifizieren. Eine systematische Studie mittels Finite-Elemente-Simulation für ideale Texturorientierungen unter Berücksichtigung der Ausrichtung der DMS-Rosette wurde durchgeführt. Die Ergebnisse der numerischen Untersuchungen zeigen, dass eine zuverlässige Spannungsanalyse an stark texturierten Materialien unter Verwendung der vorhandenen Auswerteverfahren nicht möglich ist. Es werden die Einsatzgrenzen für die Anwendung von handelsüblicher Auswertesoftware in Bezug auf den Grad der Anisotropie, den Spannungszustand und die DMS-Orientierung angegeben.


*Correspondence Address, Simone Schuster, Karlsruhe Institute of Technology, Institute for Applied Materials, Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany. E-mail:

Dipl.-Ing. Simone Schuster, born 1985, studied Mechanical Engineering at the Karlsruhe Institute of Technology, Germany, from 2005 to 2011. Since 2011, she is working as a scientific assistant at the Institute for Applied Materials – Materials Science in the group of structure and stress analysis. In 2012, she became a member of the Graduate School 1483, working in the field of residual stress analysis of strongly textured materials.

Dr.-Ing. Jens Gibmeier studied Mechanical Engineering at the University of Kassel, Germany. There, he finished his doctor's degree at the Institute of Materials Engineering – Metallic Materials in 2004 on the subject “On the effect of loading and residual stresses on the results of instrumented hardness testing”. From 2006 to 2008 he was Research Associate at Hahn-Meitner-Institute Berlin, which is now the Helmholtz Zentrum Berlin, Germany, and worked as the responsible beamline scientist at the materials research synchrotron beamline EDDI at the synchrotron storage ring BESSY II. Since 2008, he is a senior scientist at the Institute of Applied Materials (formerly: IWK I) of the Karlsruhe Institute of Technology (KIT) and heads the section “Structure and Stress Analysis”.


References

1 U. F.Kocks, C. N.Tomé, H.-R.Wenk: Texture and Anisotropy, 1st Ed., Cambridge University Press, Cambridge (1998), p. 4, pp. 3843Search in Google Scholar

2 E.Macherauch, P.Müller: Das sin2ψ-Verfahren der röntgenographischen Spannungsmessung, Z. Angew. Phys.13 (1961), pp. 340345Search in Google Scholar

3 M. G.Moore, W. P.Evans: Mathematical Correction for Stress in Removed Layers in X-Ray Diffraction Residual Stress Analysis, SAE Trans66 (1958), pp. 340345Search in Google Scholar

4 V.Hauk, D.Herlach, H.Sesemann: Über nichtlineare Gitterebenenabstandsverteilungen in Stählen, ihre Entstehung, Berechnung und Berücksichtigung bei der Spannungsermittlung, Z. Metallkd.66 (1975), pp. 734737Search in Google Scholar

5 V.Hauk, R.Oudelhoven: Eigenspannungsanalyse an kaltgewalztem Nickel, Z. Metallkd.79 (1988), pp. 4149Search in Google Scholar

6 V.Hauk, G.Vaessen: Eigenspannungen in Kristallitgruppen texturierter Stähle, Z. Metallkd.76 (1985), pp. 102107Search in Google Scholar

7 H.Behnken, VHauk: Berechnung der röntgenographischen Spannungsfaktoren texturierter Werkstoffe – Vergleich mit experimentellen Ergebnissen, Z. Metallkd.82 (1991), pp. 151158Search in Google Scholar

8 G. S.Schajer. Relaxation Methods for Measuring Residual Stresses: Techniques and Opportunities, Exp. Mech.50 (2010), pp. 11171127 DOI:10.1007/s11340-010-9386-7Search in Google Scholar

9 ASTM Standard E 837-08 (2008): Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method, ASTMSearch in Google Scholar

10 T.Schwarz, H.Kockelmann: Die Bohrlochmethode – ein für viele Anwendungsbereiche optimales Verfahren zur experimentellen Ermittlung von Eigenspannungen, Messtechnische Briefe29 (1993), pp. 3338Search in Google Scholar

11 G. S.Schajer, L.Yang: Residual Stress Measurement in Orthotropic Materials Using the Hole-Drilling Method, Exp. Mech.34 (1994), pp. 32433310.1007/BF02325147Search in Google Scholar

12 T.Schwarz: Beitrag zur Eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten Werkstoffen mittels Bohrlochmethode und Ringkernverfahren, Dissertation Universität Stuttgart, Germany (1996)Search in Google Scholar

13 G. S.Schajer: Advances in Hole-Drilling Residual Stress Measurements, Exp. Mech.50 (2010), pp. 159168 DOI:10.1007/s11340-009-9228-7Search in Google Scholar

14 D. V.Nelson: Residual Stress Determination by Hole-Drilling Combined with Optical Methods, Exp. Mech.50 (2010), pp. 145158 DOI:10.1007/s11340-009-9329-3Search in Google Scholar

15 G. S.Schajer: Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method, Part I-Stress Calculation Procedures, J. Eng. Mater. Technol.110 (1988), pp. 33834310.1115/1.3226059Search in Google Scholar

16 G. S.Schajer: Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method. Part II-Practical Application of the Integral Method, J. Eng. Mater. Technol.110 (1988), pp. 34434910.1115/1.3226060Search in Google Scholar

17 G.König: Ein Beitrag zur Weiterentwicklung teilzerstörender Eigenspannungsmeßverfahren, Dissertation Universität Stuttgart, Germany (1991)Search in Google Scholar

18 A. G.Every, A. K.McCurdy: Table 3, Cubic system, Elements, D. F.Nelson (Ed.), SpringerMaterials – The Landolt-Börnstein Database (http://www.springermaterials.com) DOI:10.1007/10046537_8Search in Google Scholar

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
  5. Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
  6. Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
  7. Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
  8. Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
  9. Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
  10. Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
  11. Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
  12. Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
  13. Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
  14. The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
  15. The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
  16. Behavior of Chopped Strand Mat and Woven Roving under Bending
  17. Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
  18. Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
  19. Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
  20. Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
  21. Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
  22. Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
  23. Optimization of Screw Elements by Genetic Algorithm
  24. Vorschau/Preview
  25. Vorschau
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110651/html
Scroll to top button