Home Technology Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
Article
Licensed
Unlicensed Requires Authentication

Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials

  • Hassan S. Hedia and Noha Fouda
Published/Copyright: November 20, 2014
Become an author with De Gruyter Brill

Abstract

Surfaces are the primary contact zones between a biomaterial and its host organism. Surface treatment or coating provides a means to fulfill demanding structural and mechanical requirements of the prostheses. As well as, a number of studies have been performed on functionally graded materials (FGM) and their suitability for use as the biomaterial of choice in various prostheses. This study investigates the effect of utilizing the two concepts of FGM and coating, in designing new hip stem material. The results of this study concluded that the optimal FGM cemented stem is consisting of titanium at the upper stem layers graded to collagen at lower stem layers. The optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen. However, this optimal graded stem coated with hydroxyapatite showed a reduction of stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite.

Kurzfassung

Oberflächen sind die primären Kontaktzonen zwischen Biomaterialien und dem Wirtsorganismus. Eine Oberflächenbehandlung oder Beschichtung ist eine Maßnahme, um die strukturellen und mechanischen Erfordernisse einer Prothese zu erfüllen. Zudem wurde eine Reihe von Studien an Gradientenwerkstoffen (Functionally Graded Materials (FGM)) durchgeführt und ihre Eignung als Biomaterial der Wahl bei verschiedenen Prothesen untersucht. In der diesem Beitrag zugrunde liegenden Studie wurde die Auswirkung der Verwendung der zwei Konzepte von FGM und Beschichtung zusammen untersucht, und zwar für das Design eines neuen Hüftschaftmaterials. Die Ergebnisse dieser Studie führen zu dem Ergebnis, dass der otpimale zementierte FGM-Schaft aus Titan an den oberen Schaftlagen bis zu Kollagen an den unteren Schaftlagen gradiert besteht. Der optimal funktionsgradierte und mit Kollagen beschichtete Schaft setzte das “Stress Shielding” um 51% im Vergleich zum homogenen mit Kollagen beschichteten Schaft aus Titan herab. Der optimal gradierte und mit Hydroxylapatit beschichtete Schaft setzte das “Stress Shielding” um 57% im Vergleich zum homogenen mit Kollagen beschichteten Schaft herab.


*Correspondence Address, Prof. Dr. Hassan Hedia, Professor of Mechanical Engineering, Consultant of the University Vice President, Vice President Office, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia. E-mail:

Prof. Dr. Hassan S. Hedia, born in 1959, is Professor for Materials and Solid Mechanics at King Abdulaziz University in Jeddah, Saudi Arabia. In 1981, he received his BSc in Mechanical Engineering from Cairo University, Egypt, and in 1989 his MSc in Production Engineering from Mansoura University, Egypt. In 1996, he achieved his PhD in the Mechanical Engineering Department at Leeds University, UK, and at the Mansoura University, Egypt within the channel system. His field of interest comprises advanced materials, fracture mechanics, stress analysis as well as biomechanics. He has published around 60 papers in international journals and is in the editorial board of three international journals.

Assist. Prof. Dr. Noha Fouda, born 1973, is Assistant Professor at Mansoura University, Faculty of Engineering, Mansoura, Egypt. She received her BSc (Production Engineering) in 1995, her MSc in 2000 and her PhD in 2006, all from Mansoura University, Egypt. Her fields of interest are optimum design, stress analysis as well as mechanics of materials.


References

1 Y. H.Kim, J. S.Kim, J. H.Joo, J. W.Park: Is hydroxyapatite coating necessary to improve survivorship of porous-coated titanium femoral stem?, The Journal of Arthroplasty27 (2011), No. 4, pp. 559563 DOI:10.1016/j.arth.2011.06.020Search in Google Scholar

2 G. L.Darimont, R.Cloots, E.Heinen, L.Seidel, R.Legrand: In vivo behaviour of hydroxyapatite coatings on titanium implants: A quantitative study in the rabbit, Biomaterials23 (2002), pp. 25692575 DOI:10.1016/S0142-9612(01)00392-1Search in Google Scholar

3 A.Race, C. D.Heffernan, P. F.Sharkey: The addition of a hydroxyapatite coating changes the immediate postoperative stability of a plasma-sprayed femoral stem, The Journal of Arthroplasty26 (2011), No. 2, pp. 289295 DOI:10.1016/j.arth.2010.02.004Search in Google Scholar PubMed

4 J. H.Lee, S.Gim, S. C.Lim: Histomorphometric study of bone reactions with different hydroxyapatite coating thickness on dental implants in dogs, Thin Solid Films519 (2011), pp. 46184622 DOI:10.1016/j.tsf.2011.01.004Search in Google Scholar

5 M.Svehla, P.Morberg, W.Bruce, B.Zicat, W. R.Walsh: The effect of substrate roughness and hydroxyapatite coating thickness on implant shear strength, The Journal of Arthroplasty17 (2001), No. 3, pp. 304311 DOI:10.1054/arth.2002.30410Search in Google Scholar PubMed

6 K. L.Ou, R. J.Chung, F. Y.Tsai, P. Y.Liang, S. W.Huang, S. Y.Chang: Effect of collagen on the mechanical properties of hydro-xyapatite coatings, Journal of the Mechanical Behavior of Biomedical Materials4 (2011), pp. 618624 DOI:10.1016/j.jmbbm.2011.02.001Search in Google Scholar PubMed

7 S.Zhang, Y. S.Wang, X. T.Zeng, K.Cheng, M.Qian, D. E.Sun, W. J.Weng, W. Y.Chia: Evaluation of interfacial shear strength and residual stress of sol–gel derived fluoridated hydroxyapatite coatings on Ti6Al4V substrates, Engineering Fracture Mechanics74 (2007), pp. 18841893 DOI:10.1016/j.engfracmech.2006.04.021Search in Google Scholar

8 S.Zhang, Z.Xianting, W.Yongsheng, C.Kui, W.Wenjian: Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings, Surface and Coating Technology200 (2006), pp. 63506354 DOI:10.1016/j.surfcoat.2005.11.033Search in Google Scholar

9 R.Narayanan, S. K.Seshadri: Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti-6Al-4V, Materials Chemistry and Physics106 (2007), pp. 406411 DOI:10.1016/j.matchemphys.2007.06.026Search in Google Scholar

10 J.Xie, B. L.Luan, J.Wang, X. Y.Liu, B.Rorabeck, R.Bourne: Novel hydroxyapatite coating on new porous titanium and titanium-HDPE composite for hip implant, Surface and Coating Technology202 (2008), pp. 29602968 DOI:10.1016/j.surfcoat.2007.10.040Search in Google Scholar

11 H. S.Hedia, M. A.Shabara, T. T.El Midany, N.Fouda: A method of material optimization of cementless stem through functionally graded material, International Journal of Mechanics and Materials in Design1 (2004), pp. 329346 DOI:10.1007/s10999-005-3307-4Search in Google Scholar

12 H. S.Hedia, M. A.Shabara, T. T.El Midany, N.Fouda: A new design of a cementless hip stem using one and two-dimensional functionally graded materials, International Conference on Production Engineering and Design for Development, PEDD7, Cairo, Egypt (2006), pp. 205210Search in Google Scholar

13 H. S.Hedia: Design of functionally graded dental implant in the presence of cancellous bone, J. Biomed. Mater. Res. Part B: Appl. Biomater75B (2005), pp. 7480 DOI:10.1002/jbm.b.30275Search in Google Scholar

14 J.Yang, H. J.Xiang: A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone, Journal of Biomechanics40 (2007), pp. 23772385 DOI:10.1016/j.jbiomech.2006.11.019Search in Google Scholar

15 H. S.Hedia, D. C.Barton, J.Fisher: Shape optimization of a Charnley prosthesis based on the fatigue notch factor, Bio-Medical Materials and Engineering, IOS-Press6 (1996), pp. 19921710.3233/BME-1996-6307Search in Google Scholar

16 H. S.Hedia, D. C.Barton, J.Fisher, T. T.El Midany: Effect of FE idealization, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with endoprosthesis, Bio-Medical Materials and Engineering, IOS-Press6 (1996), pp. 135152Search in Google Scholar

17 H. S.Hedia: Shape and material optimization of the femoral stem in hip joint prostheses, PhD Thesis, Mechanical Engineering Department, Leeds University, Leeds, UK (1996)Search in Google Scholar

18 A.Rohlmann, U.Mossner, G.Berrmann, R.Kolbel: Finite element analysis and experimental investigation of stresses in femur with hip endoprosthesis, J. Biomechanics16 (1983), No. 9, pp. 72774210.1016/0021-9290(83)90082-9Search in Google Scholar

19 P. C.Weinrauch, C.Bell, L.Wilson, B.Goss, C.Lutton, R. W.Crawford: Shear properties of bilaminar polymethylmethcrylate cement mantles in revision hip joint arthroplasty, The Journal of Arthroplasty22 (2007), No. 3, pp. 394403 DOI:10.1016/j.arth.2006.04.010Search in Google Scholar

20 R.Huiskes, H.Weinans, B.van Rietbergen: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin. Orthop. Relat. Res.274 (1992), pp. 124134Search in Google Scholar

21 J. H.Kuiper, R.Huiskes: Mathematical optimization of elastic properties: Application to cementless hip stem design, J. Biomech. Eng.119 (1997), pp. 16617410.1115/1.2796076Search in Google Scholar

22 Y. K.Kang, H. C.Park, Y.Youm, I. K.Lee, M. H.Ahn, J. C.Ihnl: Three-dimensional shape reconstruction and finite element analysis of femur before and after the cementless type of total hip replacement, Biomed. J. Eng.15 (1993), pp. 49750410.1016/0141-5425(93)90065-7Search in Google Scholar

23 J.Kuiper, R.Huiskes: Numerical Optimization of Hip-Prosthetic Stem Material, Recent Advances in Computer Methods in Biomechanics & Biomedical Engineering, J.Middleton, G. N.Pande, K. R.Williams, (1992), pp. 7684Search in Google Scholar

24 H. S.Hedia, M. A. N.Shabara, T. T.El-Midany, N.Fouda: Improved design of cementless hip stems using two-dimensional functionally graded materials, Journal of Biomedical Materials Research – Part B: Applied Biomaterials79 (2006), pp. 4249 DOI:10.1002/jbm.b.30509Search in Google Scholar PubMed

25 R. P.Bareil, R.Gauvin, F.Berthod: Collagen-based biomaterials for tissue engineering applications, Materials3 (2010), pp. 18631887 DOI:10.3390/ma3031863Search in Google Scholar

26 M.Niinomi, T.Hattori, T.Kasuga, H.Fukui: Titanium and its alloys, Encyclopedia of Biomaterials and Biomedical Engineering, New York, Marcel Dekker, (2006)Search in Google Scholar

27 M.Okada, T.Furuzono: Hydroxylapatite nanoparticles: Fabrication methods and medical applications, Sci. Technol. Adv. Mater.13 (2012), pp. 114Search in Google Scholar

28 P. C.Weinrauch, C.Bell, L.Wilson, B.Goss, C.Lutton, R. W.Crawford: Shear properties of bilaminar polymethylmethcrylate cement mantles in revision hip joint arthroplasty, The Journal of Arthroplasty22 (2007), No. 3, pp. 394403 DOI:10.1016/j.arth.2006.04.010Search in Google Scholar

29 M. C.Lawson, K. C.Hoth, C. A.De Forest, C. N.Bowman, K. S.Anseth: Inhibition of staphylococcus epidermidis biofilms using polymerizable vancomycin, Clin. Orthop. Relat. Res.468 (2010), pp. 20812091 DOI:10.1007/s11999-010-1266-zSearch in Google Scholar

30 M. E.Taylor, I. C. E.Tanner, M. A. R.Freemant, A. L.Yettram: Stress and strain distribution within the intact femur: Compression or bending?, Med. Eng. Phy.18 (1996), No. 2, pp. 12213110.1016/1350-4533(95)00031-3Search in Google Scholar

31 I.Jonkers, N.Sauwen, G.Lenaerts, M.Mulier, G.Van der Perre, S.Jaecques: Relation between subject specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement, Journal of Biomechanics41 (2008), pp. 34053413 DOI:10.1016/j.jbiomech.2008.09.011Search in Google Scholar PubMed

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
  5. Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
  6. Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
  7. Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
  8. Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
  9. Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
  10. Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
  11. Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
  12. Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
  13. Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
  14. The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
  15. The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
  16. Behavior of Chopped Strand Mat and Woven Roving under Bending
  17. Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
  18. Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
  19. Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
  20. Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
  21. Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
  22. Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
  23. Optimization of Screw Elements by Genetic Algorithm
  24. Vorschau/Preview
  25. Vorschau
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110667/html
Scroll to top button