Home Technology Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
Article
Licensed
Unlicensed Requires Authentication

Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors

  • Seksak Asavavisithchai , Supasiri Trepetch and Chonlatid Sutisakomon
Published/Copyright: November 20, 2014
Become an author with De Gruyter Brill

Abstract

Large closed cell aluminum foam components, produced through a powder metallurgical route, normally need multiple foamable precursors. The larger the size of components, the more precursors are required. The placement of precursors in the mold prior to sintering is important for a successful foaming. The present study shows that the initial precursor arrangement has a significant effect on the final foam structure and its mechanical properties. The largest foam expansion, close to the geometry of the mold, with more uniform pore distribution was found in the foam with the arrangement of four precursors, which were placed horizontally at the bottom of the mold in two layers. This was due to the delayed foam collapse as a result of the different onsets of individual precursor expansion. The difference in heat conduction of distinct precursor positions resulted in different cellular structural characteristics which strongly affect compressive behavior of the Al foams.

Kurzfassung

Große Aluminiumschaumkomponenten mit geschlossener Zellstruktur, die mittels Pulvermetallurgie hergestellt worden sind, benötigen normalerweise mehrere Schaumprecursoren. Je größer die Komponenten sind, desto größer ist auch die erforderliche Anzahl der Precursoren. Die Anordnung der Precursoren vor dem Sintern ist für ein erfolgreiches Schäumen wichtig. Die diesem Beitrag zugrunde liegende Studie hat gezeigt, dass die initiale Anordnung der Precursoren einen entscheidenden Einfluss auf die finale Schaumstruktur und dessen mechanische Eigenschaften hat. Die größte Schaumausdehnung, in die Formgeometrie gedrängt mit einer einheitlicheren Porenverteilung, wurde in dem Schaum ermittelt, der durch eine horizontale Anordnung von vier Precursoren am Formboden in zwei Lagen hergestellt wurde. Dies ergab sich, aufgrund des verzögerten Schaumkollaps, der aus den unterschiedlichen Ausdehnungseinsätzen der individuellen Vorprodukte resultierte. Der Unterschied der Wärmeleitung bei bestimmten Precursor-Positionen ergab unterschiedliche Zellstruktureigenschaften, die das Kompressionsverhalten der Al-Schäume erheblich beeinflussen.


*Correspondence Address, Assoc. Prof. Dr. Seksak Asavavisithchai, Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand. E-mail:

Dr. Seksak Asavavisithchai is Associate Professor in the Innovative Metals Research Unit, Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand. He received his PhD from the University of Nottingham, UK, in the field of materials design and engineering. His research interests are metallic foams, powder metallurgy, metal matrix composite (MMC) and failure analysis.

Supasiri Trepetch and Chonlatid Sutisakomon were undergraduate students at the Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand.


References

1 J.Banhart: Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Progress in Materials Science46 (2001), pp. 559632 DOI:10.1016/S0079-6425(00)00002-5Search in Google Scholar

2 I.Duarte, J.Banhart: A study of aluminium foam formation – Kinetics and microstructure, Acta Materialia48 (2000), pp. 23492362 DOI:10.1016/S1359-6454(00)00020-3Search in Google Scholar

3 J.Banhart: Metal foams: Production and stability, Advanced Engineering Materials8 (2006), pp. 781794 DOI:10.1002/adem.200600071Search in Google Scholar

4 I.Duarte, M.Oliveira, F.Garcia-Moreno, M.Mukherjee, J.Banhart: Foaming of AA 6061 using multiple pieces of foamable precursor, Colloids and Surfaces A: Physicochemical and Engineering Aspects438 (2013), pp. 4755 DOI:10.1016/j.colsurfa.2013.02.061Search in Google Scholar

5 E.Solorzano, J. A.Reglero, M. A.Rodriguez-Perez, J. A.de Saja, M. L.Rodriguez-Mendez: Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology, Journal of Materials Science42 (2007), pp. 72277238 DOI:10.1007/s10853-007-1529-6Search in Google Scholar

6 M.Nosko, F.Simančík, R.Florek: Reproducibility of aluminum foam properties: Effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion, Materials Science and Engineering: A527 (2010), pp. 59005908 DOI:10.1016/j.msea.2010.05.073Search in Google Scholar

7 S.Asavavisithchai, R.Tantisiriphaiboon: On the Production of Aluminium Foams Stabilised Using Particles of Rice Husk Ash, Chiang Mai Journal of Science36 (2009), pp. 302311Search in Google Scholar

8 A. E.Simone, L. J.Gibson: Efficient structural components using porous metals, Materials Science and Engineering: A229 (1997), pp. 5562 DOI:10.1016/s0921-5093(96)10842-xSearch in Google Scholar

9 A. E.Simone, L. J.Gibson: Effects of solid distribution on the stiffness and strength of metallic foams, Acta Materialia46 (1998), pp. 21392150 DOI:10.1016/s1359-6454(97)00421-7Search in Google Scholar

Published Online: 2014-11-20
Published in Print: 2014-11-17

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Residual Stress Analysis of Strongly Textured Materials by Means of the Incremental Hole-Drilling Method – Survey on the Application Limits
  5. Finite Element Analysis of Calibration Coefficients for Residual Stress Measurements by the Ring Core Procedure
  6. Influence of Specimen Dimensions and Orientation on the Tensile Properties of Structural Steel
  7. Finite Element Analysis of Friction Stir Welded Aluminum Alloy AA6061-T6 Joints
  8. Heat Treatment Effects on the Mechanical Properties and Microstructure of 30MnB4 Steel Bolts
  9. Effect of the Purging Gas on Properties of Ti Stabilized AISI 321 Stainless Steel TIG Welds
  10. Aluminum Foam Structures and Compressive Properties Produced from Multiple and Differently Arranged Precursors
  11. Lubrication Effects during Biaxial Stretch Forming of Galvanized Steel Compared to Interstitial-Free Steel
  12. Dry Sliding Wear Mechanism of Spark Plasma Sintered Si3N4/SiC Composites on Steel
  13. Effects of Coil Design on Induction Welding of Sintered Iron Based Compacts
  14. The Potential in Simulation and Metamodeling for the Understanding and Development of NDE
  15. The Effect of Aging Parameters and Roughness on the Wear Properties of Aluminum Alloy 6082
  16. Behavior of Chopped Strand Mat and Woven Roving under Bending
  17. Experimental and Numerical Analysis of Foam-Filled Aluminum Conical Tubes Subjected to Oblique Impact Loading
  18. Examination of the Wear Behavior of Cu-Ni/B4Cp Composite by the Taguchi Method
  19. Application of ANOVA and Taguchi Methods for Evaluation of the Surface Roughness of Stellite-6 Coating Material
  20. Improved Stress Shielding of a Coated Cemented Hip Stem by Functionally Graded Materials
  21. Design, Manufacture and Analysis of Composite Epoxy Material with Embedded MWCNT Fibers
  22. Effects of Cutting Parameters and Point Angle on Thrust Force and Delamination in Drilling of CFRP
  23. Optimization of Screw Elements by Genetic Algorithm
  24. Vorschau/Preview
  25. Vorschau
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110657/html
Scroll to top button