Startseite Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies

  • Muhammad Ali , Sultan Alam , Najeeb ur Rehman , Muhammad Zahoor und Muhammad Sufaid Khan
Veröffentlicht/Copyright: 13. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Magnetic carbon nanocomposite (MCNC) was prepared from peanut shells and then characterized by FTIR, SEM, TGA/DTA and BET surface area. The removal of cetyltrimethyl ammonium bromide (CTAB) surfactant from aqueous solution was carried out by MCNC and membrane. The effect of contact time, initial concentration of CTAB and the temperature on the adsorption of CTAB was also investigated. Initially, the adsorption of CTAB on MCNC was rapid up to 20 min and then gradually slowed down. Different kinetic models i. e. 2nd pseudo order kinetics, power function and intraparticle diffusion were applied to determine different kinetic parameters. Intraparticle diffusion model showed that the adsorption of CTAB is a diffusion controlled process. Thermodynamic parameters i. e. ΔH° (–33.74 kJ/mol), ΔS° (0.98 J/mol K) and ΔG° (–62.91 kJ/mol, −64.37 kJ/mol and −66.33 kJ/mol) were calculated and the process was found to be exothermic and spontaneous in nature. The prepared adsorbent (MCNC) was used for controlling fouling of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes caused by CTAB. Improved permeate fluxes and percent retention of CTAB were observed for MCNC crossbreed membrane. About 100 % retention with no effect on permeate flux was observed with RO membrane when MCNC pretreatment was applied.

Kurzfassung

Magnetische Kohlenstoff-Nanocomposite (MCNC) wurde aus Erdnussschalen hergestellt und anschließend mit FTIR-, SEM-, TGA/DTA- und BET charakterisiert. Die Entfernung des Tensids Cetyltrimethylammoniumbromid (CTAB) aus der wässrigen Lösung wurde mittels MCNC und Membran durchgeführt. Der Einfluss von Kontaktzeit, Anfangskonzentration des CTAB und Temperatur auf die Adsorption von CTAB wurde ebenfalls untersucht. Zu Beginn war die Adsorption von CTAB an MCNC schnell und verlangsamte sich nach 20 Minuten allmählich. Unterschiedliche kinetische Modelle, wie z. B. die Zweite-Pseudoordnung-Kinetik, die Potenzfunktion und die Intrapartikel-Diffusion, wurden angewendet, um die verschiedenen kinetischen Parameter zu bestimmen. Das Intrapartikel-Diffusionsmodell zeigte, dass die Adsorption von CTAB ein diffusionskontrollierter Prozess ist. Die thermodynamischen Parameter, wie ΔH° (–33,74 kJ/mol), ΔS° (0,98 J/mol K) und ΔG° (–62,91 kJ/mol, −64,37 kJ/mol und −66,33 kJ/mol) wurden berechnet; die Ergebnisse zeigten, dass der Prozess exotherm und spontan ist. Das hergestellte Adsorptionsmittel (MCNC) wurde dann zur Kontrolle der durch CTAB verursachten Verschmutzung von Ultrafiltrations- (UF), Nanofiltrations- (NF) und Umkehrosmosemembranen (RO) verwendet. Mit den MCNC-Cross-Breed-Membranen wurden verbesserte Permeatflüsse und prozentuale Retentionen von CTAB beobachtet. Mit der MCNC-Vorbehandlung wurde mit einer RO-Membran eine etwa 100 %-ige Retention ohne Auswirkung auf den Permeatfluss beobachtet.


Correspondence address, Dr. Muhammad Khan, Department of Chemistry, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan, E-Mail:

Muhammad Ali is currently doing his PhD at the Department of Chemistry University of Malakand Chakdara Dir lower, KPK Pakistan. He is working under the kind supervision of Prof. Dr. Sultan Alam research group. His current research interests cross breed pilot plant membrane separation of surfactant from waste water using fused magnetite carbon nanocomposites as an adsorbent. E-Mail:

Prof. Dr. Sultan Alam is currently working in Department of Chemistry, University of Malakand Chakdara, Dir lower, KPK Pakistan. His research interest includes Surface Chemistry, low cost adsorbent application for waste water removal, food chemistry and environmental chemistry. E-Mail:

Dr. Muhammad Zahoor is currently working as Assistant professor in Department of Chemistry, University of Malakand Chakdara, Dir lower, KPK Pakistan. His area of interest includes membrane separation, adsorption, clinical biochemistry. E-Mail:

Dr. Muhammad Sufaid Khan working in Department of Chemistry University of Malakand Chakdara Dir lower, KPK, Pakistan as assistant Professor (IPFP). Muhammad got his PhD degree from (UNESP) Brazil under the supervision of Profa Dra Hebe de las Mercedes villulas, s. His current research interest includes the development of non-Pt electrocatalysts for ORR in fuel cell cathode applications. E-Mail:

Dr. Najeeb ur Rehman is Assistant Professor in Department of Chemistry, University of Malakand. His research interest is Polymer and surfactant Chemistry. E-Mail:


References

1. Li, P. and Ishiguro, M.: Adsorption of anionic surfactant (sodium dodecyl sulfate) onsilica, Soil. Sci. Plant. Nut.62 (2016) 223229. 10.1080/00380768.2016.1191969Suche in Google Scholar

2. Mall, C. and Solanki, P. P.: Spectrophotometric and conductometric studies of molecular interaction of brilliant cresyl blue with cationic, anionic and non-ionic surfactant in aqueous medium for application in photogalvanic cells for solar energy conversion and storage, Energy Reports, 4 (2018) 2330. 10.1016/j.egyr.2017.09.001Suche in Google Scholar

3. Ayranci, E. and Duman, O.: Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, J. Hazardous Mat.148 (2007) 7582. PMid:17363147; 10.1016/j.jhazmat.2007.02.006Suche in Google Scholar PubMed

4. Khan, A. A., Paquiza, L. and Siddiqui, W. A.: Potentiometric Determination of Cationic Surfactant using ‘PolymericInorganic’ Nan°Composite Sensor, Int. J. Res. Chem. Environ.7 (2) (2017) 915. 10.1021/es980737cSuche in Google Scholar

5. Basar, C. A., Karagunduz, A., Cakici, A. and Keskinler, B.: Removal of surfactants by powdered activated carbon and microfiltration, Water Res.38 (2004) 21172124. PMid:15087193; 10.1016/j.watres.2004.02.001Suche in Google Scholar PubMed

6. Del Mar Orta, M., Martin, J., Medina-Carrasco, S., Santos, J. L., Aparicio, I. and Alonzo, E.: Novel synthetic clays for the adsorption of surfactants from aqueous media, J. Environ. Manag.206 (2018) 357363. PMid:29101877; 10.1016/j.jenvman.2017.10.053Suche in Google Scholar PubMed

7. Yakout, S. M. and Nayl, A. A.: Removal of cationic surfactant (CTAB) from aqueous solution on to activated carbon obtained from corncob carbon, Sci. Tech.2 (2009), 107116. 10.1016/j.clay.2017.10Suche in Google Scholar

8. Ren, H. P., Tian, S. P., Zhu, M., Zhao, Y. Z., Li, K. X., Ma, Q., Ding, S. Y., Gao, J. and Miao, Z.: Modification of montmorillonite by Gemini surfactants with different chain lengths and its adsorption behavior for methyl orange, Appl. Clay Sci.151 (2018) 2936. 10.1016/j.clay.2017.10.024Suche in Google Scholar

9. Li, H., Zhang, D., Han, X. and Xing, B.: Adsorption of antibiotic ciprofloxacin on carbon nanotubes; pH dependence and thermodynamics, Chemosphere.95 (2014) 150155. PMid:24094774; 10.1016/j.chemosphere.2013.08.053Suche in Google Scholar PubMed

10. Khattak, M. M. U., Zahoor, M., Muhammad, B., Khan, F. A., Ullah, R. and AbdeI-Salam, M. N.: Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass, J. Nanomaterial2017 (2017) 110. 10.1155/2017/5670371Suche in Google Scholar

11. Ullah, A., Zahoor, M. and Alam, S.: Removal of ciprofloxacin from water through magnetic nanocomposite/membrane hybrid processes, Desalination Water. Treat.137 (2019) 260272. 10.5004/dwt.2019.23187Suche in Google Scholar

12. Adzitey, F.: Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review, World Vet J, 5(3) (2015) 3641. 10.5455/wvj.20150853Suche in Google Scholar

13. Tang, J., Zong, L., Mu, B., Kang, Y. and Wang, A.: Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal, Korean J. Chem. Eng., 35(3) (2018) 115. 10.1007/s11814-018-0066-0Suche in Google Scholar

14. Zahoor, M. and Khan, F. A.: Aflatoxin B1 detoxification by magnetic carbon nanostructures prepared from maize straw, Desalination Water. Treat.57 (2016) issue 25. 10.1080/19443994.2015.1046147Suche in Google Scholar

15. Mao, H., Wang, S., Lin, J-Y., Wang, Z. and Jun, R.: Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci.49 (2016)179–188. PMid:28007173; 10.1016/j.jes.2016.05.048Suche in Google Scholar PubMed

16. Zahoor, M. and Mahramanlioglu, M.: Removal of phenolic substances from water by adsorption and adsorption-ultrafiltration, Sep. Sci. Technol, 46 (2011) 14821494. 10.1080/01496395.2011.561269Suche in Google Scholar

17. Zainol, M. M., Amin, N. A. S. and Asmadi, M.: Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal, Sains Malaysiana, 46 (2017) 773782. 10.17576/jsm-2017-4605-12Suche in Google Scholar

18. Weber, Jr, W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE.89 (1963) 3160.10.1061/JSEDAI.0000430Suche in Google Scholar

19. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S, M. and Su, X.: Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid. Interface. Sci.368 (2012) 540546. PMid:22138269; 10.1016/j.jcis.2011.11.015Suche in Google Scholar PubMed

20. Lin, S-H., Hsiao, R-C. and Juang, R.-S.: Removal of soluble organics from water by a hybrid processof clay adsorption and membrane filtration, J. Hazardous Mater.135 (2006) 134140. PMid:16359788; 10.1016/j.jhazmat.2005.11.030Suche in Google Scholar PubMed

Received: 2019-02-16
Accepted: 2019-05-20
Published Online: 2019-11-13
Published in Print: 2019-11-15

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110656/html
Button zum nach oben scrollen