Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
-
Muhammad Ali
Abstract
Magnetic carbon nanocomposite (MCNC) was prepared from peanut shells and then characterized by FTIR, SEM, TGA/DTA and BET surface area. The removal of cetyltrimethyl ammonium bromide (CTAB) surfactant from aqueous solution was carried out by MCNC and membrane. The effect of contact time, initial concentration of CTAB and the temperature on the adsorption of CTAB was also investigated. Initially, the adsorption of CTAB on MCNC was rapid up to 20 min and then gradually slowed down. Different kinetic models i. e. 2nd pseudo order kinetics, power function and intraparticle diffusion were applied to determine different kinetic parameters. Intraparticle diffusion model showed that the adsorption of CTAB is a diffusion controlled process. Thermodynamic parameters i. e. ΔH° (–33.74 kJ/mol), ΔS° (0.98 J/mol K) and ΔG° (–62.91 kJ/mol, −64.37 kJ/mol and −66.33 kJ/mol) were calculated and the process was found to be exothermic and spontaneous in nature. The prepared adsorbent (MCNC) was used for controlling fouling of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes caused by CTAB. Improved permeate fluxes and percent retention of CTAB were observed for MCNC crossbreed membrane. About 100 % retention with no effect on permeate flux was observed with RO membrane when MCNC pretreatment was applied.
Kurzfassung
Magnetische Kohlenstoff-Nanocomposite (MCNC) wurde aus Erdnussschalen hergestellt und anschließend mit FTIR-, SEM-, TGA/DTA- und BET charakterisiert. Die Entfernung des Tensids Cetyltrimethylammoniumbromid (CTAB) aus der wässrigen Lösung wurde mittels MCNC und Membran durchgeführt. Der Einfluss von Kontaktzeit, Anfangskonzentration des CTAB und Temperatur auf die Adsorption von CTAB wurde ebenfalls untersucht. Zu Beginn war die Adsorption von CTAB an MCNC schnell und verlangsamte sich nach 20 Minuten allmählich. Unterschiedliche kinetische Modelle, wie z. B. die Zweite-Pseudoordnung-Kinetik, die Potenzfunktion und die Intrapartikel-Diffusion, wurden angewendet, um die verschiedenen kinetischen Parameter zu bestimmen. Das Intrapartikel-Diffusionsmodell zeigte, dass die Adsorption von CTAB ein diffusionskontrollierter Prozess ist. Die thermodynamischen Parameter, wie ΔH° (–33,74 kJ/mol), ΔS° (0,98 J/mol K) und ΔG° (–62,91 kJ/mol, −64,37 kJ/mol und −66,33 kJ/mol) wurden berechnet; die Ergebnisse zeigten, dass der Prozess exotherm und spontan ist. Das hergestellte Adsorptionsmittel (MCNC) wurde dann zur Kontrolle der durch CTAB verursachten Verschmutzung von Ultrafiltrations- (UF), Nanofiltrations- (NF) und Umkehrosmosemembranen (RO) verwendet. Mit den MCNC-Cross-Breed-Membranen wurden verbesserte Permeatflüsse und prozentuale Retentionen von CTAB beobachtet. Mit der MCNC-Vorbehandlung wurde mit einer RO-Membran eine etwa 100 %-ige Retention ohne Auswirkung auf den Permeatfluss beobachtet.
References
1. Li, P. and Ishiguro, M.: Adsorption of anionic surfactant (sodium dodecyl sulfate) onsilica, Soil. Sci. Plant. Nut.62 (2016) 223–229. 10.1080/00380768.2016.1191969Suche in Google Scholar
2. Mall, C. and Solanki, P. P.: Spectrophotometric and conductometric studies of molecular interaction of brilliant cresyl blue with cationic, anionic and non-ionic surfactant in aqueous medium for application in photogalvanic cells for solar energy conversion and storage, Energy Reports, 4 (2018) 23–30. 10.1016/j.egyr.2017.09.001Suche in Google Scholar
3. Ayranci, E. and Duman, O.: Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, J. Hazardous Mat.148 (2007) 75–82. PMid:17363147; 10.1016/j.jhazmat.2007.02.006Suche in Google Scholar PubMed
4. Khan, A. A., Paquiza, L. and Siddiqui, W. A.: Potentiometric Determination of Cationic Surfactant using ‘PolymericInorganic’ Nan°Composite Sensor, Int. J. Res. Chem. Environ.7 (2) (2017) 9–15. 10.1021/es980737cSuche in Google Scholar
5. Basar, C. A., Karagunduz, A., Cakici, A. and Keskinler, B.: Removal of surfactants by powdered activated carbon and microfiltration, Water Res.38 (2004) 2117–2124. PMid:15087193; 10.1016/j.watres.2004.02.001Suche in Google Scholar PubMed
6. Del Mar Orta, M., Martin, J., Medina-Carrasco, S., Santos, J. L., Aparicio, I. and Alonzo, E.: Novel synthetic clays for the adsorption of surfactants from aqueous media, J. Environ. Manag.206 (2018) 357–363. PMid:29101877; 10.1016/j.jenvman.2017.10.053Suche in Google Scholar PubMed
7. Yakout, S. M. and Nayl, A. A.: Removal of cationic surfactant (CTAB) from aqueous solution on to activated carbon obtained from corncob carbon, Sci. Tech.2 (2009), 107–116. 10.1016/j.clay.2017.10Suche in Google Scholar
8. Ren, H. P., Tian, S. P., Zhu, M., Zhao, Y. Z., Li, K. X., Ma, Q., Ding, S. Y., Gao, J. and Miao, Z.: Modification of montmorillonite by Gemini surfactants with different chain lengths and its adsorption behavior for methyl orange, Appl. Clay Sci.151 (2018) 29–36. 10.1016/j.clay.2017.10.024Suche in Google Scholar
9. Li, H., Zhang, D., Han, X. and Xing, B.: Adsorption of antibiotic ciprofloxacin on carbon nanotubes; pH dependence and thermodynamics, Chemosphere.95 (2014) 150–155. PMid:24094774; 10.1016/j.chemosphere.2013.08.053Suche in Google Scholar PubMed
10. Khattak, M. M. U., Zahoor, M., Muhammad, B., Khan, F. A., Ullah, R. and AbdeI-Salam, M. N.: Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass, J. Nanomaterial2017 (2017) 1–10. 10.1155/2017/5670371Suche in Google Scholar
11. Ullah, A., Zahoor, M. and Alam, S.: Removal of ciprofloxacin from water through magnetic nanocomposite/membrane hybrid processes, Desalination Water. Treat.137 (2019) 260–272. 10.5004/dwt.2019.23187Suche in Google Scholar
12. Adzitey, F.: Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review, World Vet J, 5(3) (2015) 36–41. 10.5455/wvj.20150853Suche in Google Scholar
13. Tang, J., Zong, L., Mu, B., Kang, Y. and Wang, A.: Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal, Korean J. Chem. Eng., 35(3) (2018) 1–15. 10.1007/s11814-018-0066-0Suche in Google Scholar
14. Zahoor, M. and Khan, F. A.: Aflatoxin B1 detoxification by magnetic carbon nanostructures prepared from maize straw, Desalination Water. Treat.57 (2016) issue 25. 10.1080/19443994.2015.1046147Suche in Google Scholar
15. Mao, H., Wang, S., Lin, J-Y., Wang, Z. and Jun, R.: Modification of a magnetic carbon composite for ciprofloxacin adsorption, J. Environ. Sci.49 (2016)179–188. PMid:28007173; 10.1016/j.jes.2016.05.048Suche in Google Scholar PubMed
16. Zahoor, M. and Mahramanlioglu, M.: Removal of phenolic substances from water by adsorption and adsorption-ultrafiltration, Sep. Sci. Technol, 46 (2011) 1482–1494. 10.1080/01496395.2011.561269Suche in Google Scholar
17. Zainol, M. M., Amin, N. A. S. and Asmadi, M.: Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal, Sains Malaysiana, 46 (2017) 773–782. 10.17576/jsm-2017-4605-12Suche in Google Scholar
18. Weber, Jr, W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE.89 (1963) 31–60.10.1061/JSEDAI.0000430Suche in Google Scholar
19. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S, M. and Su, X.: Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid. Interface. Sci.368 (2012) 540–546. PMid:22138269; 10.1016/j.jcis.2011.11.015Suche in Google Scholar PubMed
20. Lin, S-H., Hsiao, R-C. and Juang, R.-S.: Removal of soluble organics from water by a hybrid processof clay adsorption and membrane filtration, J. Hazardous Mater.135 (2006) 134–140. PMid:16359788; 10.1016/j.jhazmat.2005.11.030Suche in Google Scholar PubMed
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies