A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
-
Monohar Hossain Mondal
, Md. Ansar Ali , Aniruddha Pal und Bidyut Saha
Abstract
The current requirement for science and research concerns the absolute sustainable development of a chemistry that is inherently safer, smarter and more environmentally friendly. The oxidation reaction is a very fundamental transformation reaction in organic synthesis and likely plays a significant role in the production of various value-added chemicals from biomass and others precursors. In the focus of making kinetic experiments greener several modified methodologies and safe chemicals have been employed. Surfactants are such suitable alternate that go with the requirments. Surfactant aggregates i. e. micelles are nano-sized supra molecules, able to act as catalysts. They can be used to catalyze the organic functional group transformation reactions mediated with transition metals and promoted with various aromatic bases. This allowed water to be used as a solvent, where the reactions became more sustainable. The recyclability of used surfactants, enhancement of reaction kinetics and speed of reaction with no consumption of energy has added more value to this type of catalytic oxidation. This article aims to contribute to the discussion of the mechanistic aspects of various types of surfactant-catalyzed oxidation of organic functional groups.
Kurzfassung
Die aktuelle Anforderung an Wissenschaft und Forschung betreffen die unbedingt nachhaltige Entwicklung einer Chemie, die von Natur aus sicherer, intelligenter und umweltfreundlicher ist. Eine Oxidationsreaktion ist eine sehr grundlegende Transformationsreaktion der organischen Synthese und spielt wahrscheinlich eine wichtige Rolle bei der Herstellung verschiedener hochveredelter Chemikalien aus Biomasse und anderen Vorprodukten. Um kinetische Experimente umweltfreundlicher zu gestalten, wurden verschiedene modifizierte Methoden und sichere Chemikalien eingesetzt. Tenside sind geeignete Alternativen, die zu den Anforderungen passen. Tensidaggregate, d. h. Mizellen, sind nanogroße Supra-Moleküle, die als Katalysatoren wirken können. Sie werden verwendet, um die mit Übergangsmetallen und/oder mit verschiedenen aromatischen Basen vermittelten Umwandlungsreaktionen organischer funktioneller Gruppen zu katalysieren. Dadurch konnte Wasser als Lösungsmittel eingesetzt werden, wodurch die Reaktionen nachhaltiger wurden. Die Recyclingfähigkeit der verwendeten Tenside, die Verbesserung der Reaktionskinetik und die Reaktionsgeschwindigkeit ohne Energieverbrauch haben zu einer höheren Wertschöpfung bei dieser Art der katalytischen Oxidation geführt. Dieser Artikel möchte einen Beitrag zur Diskussion der mechanistischen Aspekte verschiedener Arten der Tensid-katalysierten Oxidation von organischen funktionellen Gruppen leisten.
References
1. Mondal, M. H., Malik, S., Roy, A., Saha, R. and Saha, B.: Modernization of surfactant chemistry in the age of gemini and bio-surfactants: a review. RSC Adv., 5 (2015) 92707–92718. 10.1039/C5RA18462BSuche in Google Scholar
2. Gupta, M., Saha, S. K. and Banerjee, P.: Kinetics and Mechanism of the Reduction of Dodecatungstocobaltate(llI) by D-Fructose, D-Glucose, and D-Mannose: Comparison between Keto- and Aldo- hexoses. J. Chem. Soc., Perkin Trans.2 (1988) 1781. 10.1039/P29880001781Suche in Google Scholar
3. Mondal, M. H., Roy, A., Malik, S., Ghosh, A. and Saha, B.: Review on chemically bonded geminis with cationic heads: second-generation interfactants. Res. Chem. Intermed, 42 (2015) 1913–1928. 10.1007/s11164-015-2125-zSuche in Google Scholar
4. Berezin, I. V., Martinek, K. and Yatsimirskii, A. K.: Physicochemical foundations of micellar catalysis. Russ. Chem. Rev.42 (1973) 787–802. 10.1070/RC1973v042n10ABEH002744Suche in Google Scholar
5. Sorella, G. L., Strukul, G. and Scarso, A.: Recent advances in catalysis in micellar media. Green. Chem.17 (2015) 644–683. 10.1039/C4GC01368ASuche in Google Scholar
6. Mondal, M. H., Sarkar, A., Maiti, T. K. and Saha, B.: Microbial assisted (Pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies. J. Mol. Liq.242 (2017) 873–878. 10.1016/j.molliq.2017.07.089Suche in Google Scholar
7. Ghosh, A., Saha, R., Sar, P. and Saha, B.: Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of formaldehyde to formic acid in aqueous medium at atmospheric pressure: A kinetic approach. J. Mol. Liq.186 (2013). 122–130. 10.1016/j.molliq.2013.07.003Suche in Google Scholar
8. Mukherjee, K., Ghosh, S. K., Nandi, R., Ghosh, A., Saha, I., Saha, R. and Saha, B.: Selection of Promoter and Micellar Catalyst for Chromic Acid Oxidation of Tartaric Acid in Aqueous Medium at Room Temperature Tenside Surf. Det.50 (2013) 441–645. 10.3139/113.110278Suche in Google Scholar
9. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Ghosh, T., Mukherjee, K., Bhattacharyya, S. S. and Saha, B.: Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants. Tenside Surf. Det.49 (2012) 481–487. 10.3139/113.110220Suche in Google Scholar
10. Mukherjee, K. and Saha, B.: Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium. Tenside Surf. Det.52 (2015) 302–310. 10.3139/113.110379Suche in Google Scholar
11. Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Combination of best promoter and catalyst for hypervalent chromium oxidation of l-sorbose to lactone of C5 aldonic acid in aqueous media at room temperature. J. Mol. Liq.179 (2013) 1–6. 10.1016/j.molliq.2012.12.012Suche in Google Scholar
12. Saha, R., Ghosh, A., Sar, P., Saha, I., Ghosh, S. K., Mukherjee, K. and Saha, B.: Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochim. Acta, Part A116 (2013) 524–531. PMid:23978739; 10.1016/j.saa.2013.07.065Suche in Google Scholar PubMed
13. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media. Tenside Surf. Det, 50 (2013) 249–258. 10.3139/113.110256Suche in Google Scholar
14. Ghosh, A., Saha, R. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. J. Ind. Eng. Chem20 (2014) 345–355. 10.1016/j.jiec.2013.03.028Suche in Google Scholar
15. Bhattacharyya, P., Ghosh, A. and Saha, B.: Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure. Tenside Surf. Det.52 (2015) 36–40. 10.3139/113.110346Suche in Google Scholar
16. Mukherjee, K., Ghosh, A., Saha, R., Sar, P., Malik, S. and Saha, B.: Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochim. Acta, Part A122 (2014) 204–208. PMid:24317255; 10.1016/j.saa.2013.11.068Suche in Google Scholar PubMed
17. Mondal, M. H., Malik, S., De, S., Bhattacharyya, S. S. and Saha, B.: Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP. Res Chem Intermed43 (2017) 1651–1670. 10.1007/s11164-016-2721-6Suche in Google Scholar
18. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar Catalysis of Chromic Acid Oxidation of Methionine to Industrially Important Methylthiol in Aqueous Media at Room Temperature. Tenside Surf. Det50 (2013) 94–98. 10.3139/113.110237Suche in Google Scholar
19. Saha, R., Ghosh, A. and Saha, B.: Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem. Eng. Sci.99 (2013) 23–27. 10.1016/j.ces.2013.05.043Suche in Google Scholar
20. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K. and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperature. J. Mol. Liq.225 (2017) 207–216. 10.1016/j.molliq.2016.11.033Suche in Google Scholar
21. Mondal, M. H., Malik, S. and Saha, B.: Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl. Tenside, Surf. Det.54 (2017) 378–384. 10.3139/113.110519Suche in Google Scholar
22. Mitewa, M. and Bontchev, P. R.: Chromium(V) coordination chemistry. Coord. Chem. Rev.61(1985) 241–272. 10.1016/0010-8545(85)80006-0Suche in Google Scholar
23. Sengupta, K. K. and Basu, S. N.: Kinetics and mechanism of oxidation of d-glucose and d-ribose by chromium(VI) and vanadium(V) in perchloric acid medium. Carbohydr. Res.80(1980) 223–232. 10.1016/S0008-6215(00)84861-2Suche in Google Scholar
24. Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of Natural Surfactant Saponin from Soapnut (Sapindusmukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water. Tenside, Surf. Det.54 (2017) 519–529. 10.3139/113.110523Suche in Google Scholar
25. Das, A. K.: Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. CoordChem Rev248 (2004) 81–99. 10.1016/j.cct.2003.10.012Suche in Google Scholar
26. Menger, F. M. and Portnoy, C. E.: Chemistry of reactions proceeding inside molecular aggregates. J. Amer. Chem. Soc.89 (1967) 4698–4703. 10.1021/ja00994a023Suche in Google Scholar
27. Piszkiewicz, D.: Cooperativity in bimolecular micelle-catalyzed reactions. Inhibition of catalysis by high concentrations of detergent. J. Am. Chem. Soc.99 (1977) 7695–7697. 10.1021/ja00465a046Suche in Google Scholar
28. Das, A. K., Mondal, S. K., Kar, D. and Das, M.: Micellar Effect on Chromium(VI) Oxidation of D-Glucose in the Presence and Absence of Picolinic Acid in Aqueous Media: A Kinetic Study. Inorg. React. Mech.3 (2001) 63–74. 10.1515/irm-2001-0107Suche in Google Scholar
29. Das, A. K., Roy, A., Saha, B., Mohanty, R. K. and Das, M.: Micellar effect on the reaction of chromium(VI) oxidation of D-fructose in the presence and absence of picolinic acid in aqueous media: A kinetic study. J. Phys. Org. Chem.14 (2001) 333–342. 10.1002/poc.374Suche in Google Scholar
30. Saha, B., Das, M., Mohanty, R. K. and Das, A. K.: Micellar Effect on the Reaction of Chromium(VI) Oxidation of L-Sorbose in the Presence and Absence of Picolinic Acid in Aqueous Acid Media: A Kinetic Study. J. Chin. Chem. Soc.51 (2004) 399–408. 10.1002/jccs.200400062Suche in Google Scholar
31. Kabir-ud-Din, Morshed, A. M. A. and Khan, Z.: Influence of sodium dodecyl sulfate/TritonX-100 micelles on the oxidation of d-fructose by chromic acid in presence of HClO4. Inorg. React. Mech.337 (2002) 1573–1583. 10.1016/S0008-6215(02)00167-2Suche in Google Scholar
32. Rafiquee, Z. A., Shah, R. A., Kabir-ud-Din and Khan, Z.: Kinetics of the interaction of Cd(II)-histidine complex with ninhydrin in absence and presence of cationic and anionic micelles. Int. J. Chem. Kinet.29 (1997) 131–138. 10.1002/(SICI)1097-4601(1997)29:2<131::AID-KIN7>3.0.CO;2-VSuche in Google Scholar
33. Mishra, S., Panigrahi, A. K. and Sinha, B. K.: Acid-catalysed hydrolysis of methyl acetate in micellar phase. J. Indian Chem. Soc.74 (1997) 408–410.Suche in Google Scholar
34. Perez-Benito, E. and Rodenas, E.: Influence of sodium dodecyl sulfate micelles on the oxidation of alcohols by chromic acid. Langmuir7 (1991) 232–237. 10.1021/la00050a005Suche in Google Scholar
35. Jagannadham, V.: Electron Transfer Reactions: A Treatise Am. J. Chem.2 (2012) 57–82. 10.5923/j.chemistry.20120202.11Suche in Google Scholar
36. Das, A. K., Mondal, S. K., Kar, D. and Das, M.: Kinetics and Mechanism of Picolinic Acid Promoted Chromium(VI) Oxidation of Dimethyl Sulfoxide in the Presence and Absence of Surfactants. J. Chem. Res. (S) (1998) 574–575. 10.1039/A800993GSuche in Google Scholar
37. Das, A. K., Mondal, S. K., Kar, D. and Das, M.: Micellar effect on the reaction of picolinic acid catalyzed chromium(VI) oxidation of dimethyl sulfoxide in aqueous acidic media: A kinetic study. Int. J. Chem. Kinet.33 (2001) 173–181. 10.1002/1097-4601(200103)33:3<173::AID-KIN1011>3.0.CO;2-ISuche in Google Scholar
38. Oae, S. and Uchida, Y.: Ligand-coupling reactions of hypervalent species. Acc. Chem. Res.24 (1991) 202–208. 10.1021/ar00007a003Suche in Google Scholar
39. Panigrahi, G. P. and Mishra, S. K.: Micellar-catalysis: Effect of sodium lauryl sulphate in the oxidation of lactic acid by chromic acid. J. Mol. Catal.81 (1993) 349–362. 10.1016/0304-5102(93)85020-TSuche in Google Scholar
40. Sarada, N. C. and Reddy, I. A. K.: Effect of surfactans on oxalic acid catalyzed oxidation of aromatic azo compounds by chromium(VI). J. Indian Chem. Soc.70 (1993) 35.Suche in Google Scholar
41. Kabir-ud-Din, Akram, M. and Khan, Z.: Catalytic Effect of Polyoxyethylene t-octylphenol (Triton X-100) Surfactant on the Oxidation of EDTA by Chromic Acid. Inorg. React. Mech.4 (2010) 187–196. 10.1080/1028662021000062572Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies