Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
-
Chuangye Wang
Abstract
It has been well-known that the addition of electrolytes causes the ionic surfactant solution to have a lower surface tension by stimulating the surface adsorption. When the surface concentration of an ionic surfactant remains constant, the solution with supporting electrolyte in the bulk displays a lower surface tension than a solution without electrolyte. From the surface perspective we investigate the dependence of the surface tension of a solution upon the surface concentration of ionic surfactant and the influences of the supporting electrolyte therein, by means of thermodynamics and molecular dynamics simulation. The derived thermodynamic formula and simulation results predict, that at a given surface concentration the supporting electrolyte can change the orientation of the ionic surfactant, which results in a lower surface tension. The conclusions can be useful for the investigation to the surface structure of ionic surfactant solutions and the effects of supporting electrolyte.
Kurzfassung
Es ist bekannt, dass aufgrund der Stimulation der Oberflächenadsorption die Zugabe von Elektrolyten zu Lösungen ionischer Tenside die Oberflächenspannung absenkt. Wenn die Oberflächenkonzentration des ionischen Tensids konstant bleibt, zeigt die Lösung mit dem Leitelektrolyten in der Bulkphase eine geringere Oberflächenspannung als die Lösung ohne Elektrolyt. Aus der Perspektive der Oberfläche untersuchen wir die Abhängigkeit der Oberflächenspannung der Lösung von der Oberflächenkonzentration des ionischen Tensids und die Einflüsse des darin enthaltenen Leitelektrolyten mittels thermodynamischer und molekulardynamischer Simulation. Die abgeleitete thermodynamischen Größen und die Simulationsergebnisse sagen voraus, dass der Leitelektrolyt bei einer bestimmten Oberflächenkonzentration die Orientierung des ionischen Tensids ändern kann, was zu einer geringeren Oberflächenspannung führt. Die Schlussfolgerungen können für die Untersuchung der Oberflächenstruktur ionischer Tensidlösungen und der Wirkung von Leitelektrolyten nützlich sein.
References
1. Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models, Colloid Surface A178 (2001)1–40. 10.1016/S0927-7757(00)00706-8Suche in Google Scholar
2. Borwankar, R. P. and Wasan, D. T.: The kinetics of adsorption of ionic surfactants at gas-liquid surfaces, Chem. Eng. Sci.41 (1986) 199–201. 10.1016/0009-2509(86)85217-4Suche in Google Scholar
3. Kaliinin, V. V. and Radke, C. J.: An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces, Colloids Surf. A114 (1996) 337–350. 10.1016/0927-7757(96)03592-3Suche in Google Scholar
4. Warszynski, P., Barzyk, W., Lunkenheim, K. and Fruhner, H.: Surface tension and surface potential of na n-dodecyl sulfate at the air-solution interface: model and experiment, J. Phys. Chem. B102 (1998) 10948–10957. 10.1021/jp983901rPSuche in Google Scholar
5. Warszynski, P., Lunkenheim, K. and Czichocki, G.: Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces, Langmuir18 (2002) 2506–2514. 10.1021/la010381pSuche in Google Scholar
6. Kralchevsky, P. A., Danov, K. D. and Broze, G.: Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of salts of various valency, Langmuir15 (1999) 2351–2365. 10.1021/la981127tSuche in Google Scholar
7. Gilanyi, T., Varga, I. and Meszaros, R.: Specific counterion effect on the adsorption of alkali decyl sulfate surfactants at air/solution interface, Phys. Chem. Chem. Phys.6 (2004) 4338–4346. 10.1039/B400958DSuche in Google Scholar
8. Hantal, G., Partay, L., Varga, I., Jedlovszky, P. and Gilanyi, T.: Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface: a computer simulation study, J. Phys. Chem. B111 (2007) 1769–1774. PMid:17263573; 10.1021/jp066969cSuche in Google Scholar PubMed
9. Para, G., Jarek, E. and Warszynski, P.: The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions, Colloid Surface A261 (2005) 65–73. 10.1016/j.colsurfa.2004.11.044Suche in Google Scholar
10. Slavchov, R. I., Karakashev, S. I., and Ivanov, I. B.: Ionic surfactants and ion-specific effects: adsorption, micellization, thin liquid films, in: Romsted, L.S. (Ed.), Surfactant Science and Technology: Retrospects and Prospects, Taylor & Francis Group (2014) 53–118. 10.1201/b16802-4Suche in Google Scholar
11. Wang, C. and Morgner, H.: The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counter-ions therein, Phys. Chem. Chem. Phys.16 (2014) 23386–23393. PMid:25265069; 10.1039/c4cp03607gSuche in Google Scholar PubMed
12. Butler, J. A. V.: The thermodynamics of the surfaces of solutions, Proc. R. Soc. A135 (1932) 348–375. 10.1098/rspa.1932.0040Suche in Google Scholar
13. Kaptay, G.: Partial surface tension of components of a solution, Langmuir31 (2015) 5796–5804. PMid:25942049; 10.1021/acs.langmuir.5b00217Suche in Google Scholar PubMed
14. Wang, C., Tan, Y., Jiang, Z., Lin, X. and Hu, S.: Molecular structure of ionic surfactant solution surface and effects of counter-ion therein-a joint investigation by simulation and experiment, Colloid Polym. Sci.293 (2015) 3479–3486. 10.1007/s00396-015-3685-6Suche in Google Scholar
15. Wang, C., Jiang, Z., Xu, L., Kan, A., Fu, H. and Lin, X.: Surface structure of aqueous ionic surfactant solutions and effects of solvent therein–a computer simulation study, Colloid Polym. Sci.294 (2016) 575–581. 10.1007/s00396-015-3812-4Suche in Google Scholar
16. Kirmse, K. and Morgner, H.: Binary Liquid Mixtures. The relation between surface tension and surface composition as studied by mies (metastable induced electron spectroscopy), Langmuir22 (2006) 2193–2199. PMid:16489806; 10.1021/la052444kSuche in Google Scholar PubMed
17. Wang, C., Wang, X., Liu, F., Jiang, Z. and Lin, X.: Surface concentration or surface excess, which one dominates the surface tension of multicomponent mixtures? Colloid Polym. Sci.296 (2018) 89–93. 10.1007/s00396-017-4233-3Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies