Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
-
Qiaoyun Zhang
und Wenwei Jiang
Abstract
The amino acid surfactants were synthesized by using natural fatty acid esters (FAE) as raw materials, but FAE with a high iodine value has thermal and oxidative instabilities in chemical reactions. The oxidation of FAE by peroxyacetic acid generated was studied under various conditions, then the oxidized FAE and different amino acids (glycine, glutamic acid and aspartic acid) were used to form sodium N-acyl amino acids in glycerol. By the surface tension method, the relationship between temperature and critical micelle concentration (CMC) has been researched. The CMC value, the surface tension at the CMC (γCMC), and the maximum surface excess concentration Γmax were calculated, respectively. For different amino acids surfactants, the surface tension of the solution was greatly reduced at the low CMC value, and the γCMC constantly decreases with rising temperature.
Kurzfassung
Die Aminosäuretenside wurden unter Verwendung natürlicher Fettsäureester (FAE) als Ausgangsmaterial synthetisiert, FAE mit hohem Iodwert weist jedoch thermische und oxidative Instabilitäten bei chemischen Reaktionen auf. Die Oxidation von FAE durch erzeugte Peressigsäure wurde unter verschiedenen Bedingungen untersucht, dann wurden die oxidierten FAE und verschiedene Aminosäuren (Glycin, Glutaminsäure und Asparaginsäure) verwendet, um Natrium-N-Acyl-Aminosäuren in Glycerin zu bilden. Durch die Oberflächenspannungsmethode wurde die Beziehung zwischen Temperatur und kritischer Mizellenkonzentration (CMC) untersucht. Der CMC-Wert, die Oberflächenspannung bei der CMC (γCMC), bzw. die maximale Oberflächenüberschusskonzentration Γmax wurden jeweils berechnet. Bei verschiedenen Aminosäuretensiden ist die Oberflächenspannung der Lösung bei niedrigrem CMC-Wert deutlich reduziert und nimmt mit steigender Temperatur stetig ab.
References
1. Kumar, D. and Rub, M. A.: Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants; Journal of Molecular Liquids.250 (2018) 329–334. 10.1016/j.molliq.2017.11.172Suche in Google Scholar
2. Wu, M. H., Wan, L. Z. and Zhang, Y. Q.: A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material; Scientific Reports.4 (2014) 4428. PMid:24651079; 10.1038/srep04428Suche in Google Scholar
3. Reznik, G. O., Vishwanath, P., Pynn, M. A., Sitnik, J. M., Todd, J. J., Wu, J., Jiang, Y., Keenan, B. G., Castle, A. B., Haskell, R. F., Smith, T. F., Somasundaran, P. and Jarrell, K. A.: Use of sustainable chemistry to produce an acyl amino acid surfactant; Applied Microbiology Biotechnology, 86 (2010) 1387–1397. PMid:20094712; 10.1007/s00253-009-2431-8Suche in Google Scholar
4. Adak, S. and Banerjee, R.: A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant; 150 (2016) 359–368. PMid:27312646; 10.1016/j.carbpol.2016.05.038Suche in Google Scholar
5. Bordes, R. and Holmberg, K.: Amino acid-based surfactants – do they deserve more attention?Advances in Colloid and Interface Science.222 (2015) 79–91. PMid:25846628; 10.1016/j.cis.2014.10.013Suche in Google Scholar
6. Morán, M. C., Pinazo, A., Pérez, L., Clapés, P., Angelet, M., García, M. T., Vinardell, M. P. and Infante, M. R.: “Green” amino acid-based surfactant; Green Chemistry.6 (2004) 233–240. 10.1039/b400293hSuche in Google Scholar
7. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena, Fourth Edition. Wiley (2012). 10.1002/9781118228920Suche in Google Scholar
8. Derawi, D. and Salimon, J.: Optimization on epoxidation of palm olein by using performic acid; E-Journal of Chemistry.7 (2010) 1440–1448. 10.1155/2010/384948Suche in Google Scholar
9. Adhvaryu, A. and Erhan, S. Z.: Epoxidized soybean oil as a potential source of high-temperature lubricants∗ 1; Industrial Crops & Products.15 (2002) 247–254. 10.1016/s0926-6690(01)00120-0Suche in Google Scholar
10. Campanella, A., Fontanini, C. and Baltanás, M. A.: High yield epoxidation of fatty acid methyl esters with performic acid generated in situ; Chemical Engineering Journal.144 (2008) 466–475. 10.1016/j.cej.2008.07.016Suche in Google Scholar
11. Warwel, S. and Rüsch gen, Klaas M.: Chemo-enzymatic epoxidation of unsaturated carboxylic acids; Journal of Molecular Catalysis B: Enzymatic.1 (1995) 29–35. 10.1016/1381-1177(95)00004-6Suche in Google Scholar
12. Sharpless, K. B. and Woodard, S. S.: On the mechanism of titanium-tartrate catalyzed asymmetric epoxidation; Pure and Applied Chemistry.55 (1983) 1823–1836. 10.1351/pac198355111823Suche in Google Scholar
13. Goud, V. V., Pradhan, N. C. and Patwardhan, A. V.: Epoxidation of karanja (Pongamia glabra) oil by H2O2; Journal of the American Oil Chemists’ Society.83 (2006) 635–640. 10.1007/s11746-006-1250-7Suche in Google Scholar
14. Janković, M. and Sinadinović-Fišer, S.: Prediction of the chemical equilibrium constant for peracetic acid formation by hydrogen peroxide; Journal of the American Oil Chemists’ Society.82 (2005) 301–303. 10.1007/s11746-005-1070-9Suche in Google Scholar
15. Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S. and Yang, L.: Studies on the kinetics of in situ epoxidation of vegetable oils; European Journal of Lipid Science and Technology.110 (2008) 341–346. 10.1002/ejlt.200700104Suche in Google Scholar
16. Rüsch gen, Klaas M. and Warwel, S.: Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis; Industrial Crops and Products.9 (1999) 125–132. 10.1016/s0926-6690(98)00023-5Suche in Google Scholar
17. Kumar, D., Rub, M. A., Azum, N. and Asiri, A. M.: Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini); Journal of Physical Organic Chemistry.31 (2018) e3730. 10.1002/poc.3730Suche in Google Scholar
18. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-gemini (m-s-m type) surfactant system; Journal of Molecular Liquids.240 (2017) 253–257. 10.1016/j.molliq.2017.05.088Suche in Google Scholar
19. Tripathy, D. B., Mishra, A., Clark, J. and Farmer, T.: Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review; Comptes Rendus Chimie.21 (2018) 112–130. 10.1016/j.crci.2017.11.005Suche in Google Scholar
20. Infante, M. R., Pérez, L., Morán, M. C., Pons, R., Mitjans, M., Vinardell, M. P., Garcia, M. T. and Pinazo, A.: Biocompatible surfactants from renewable hydrophiles; European Journal of Lipid Science and Technology.112 (2010) 110–121. 10.1002/ejlt.200900110Suche in Google Scholar
21. Campanella, A., Fontanini, C. and Baltanás, M. A.: High yield epoxidation of fatty acid methyl esters with performic acid generated in situ; Chemical Engineering Journal.144 (2008) 466–475. 10.1016/j.cej.2008.07.016Suche in Google Scholar
22. Rangarajan, B., Havey, A., Grulke, E. A. and CulnanP. D.: Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil; Journal of the American Oil Chemists’ Society.72 (1995) 1161–1169. 10.1007/bf02540983Suche in Google Scholar
23. Liu, Q., Hu, X. and Fang, Y.: Synthesis of sodium N-lauroylglycinate from methyl laurate and sodium glycinate in glycerol; Fine Chemicals.07 (2016) 768–771. 10.13550/j.jxhg.2016.07.009Suche in Google Scholar
24. Zhao, X., Zhang, T., Zhou, Y. and Liu, D.: Preparation of peracetic acid from acetic acid and hydrogen peroxide: Experimentation and modeling; The Chinese Journal of Process Engineering.8 (2008) 35–41. 10.3321/j.issn:1009-606X.2008.01.007Suche in Google Scholar
25. Wang, D. S., Zhuo, C. and Wu, D. J.: Preparation and application of peracetic acid in pharmaceutical synthesis; Chinese Journal of Synthetic Chemistry.8 (2000) 22–28. 10.3969/j.issn.1005-1511.2000.01.006Suche in Google Scholar
26. Dinda, S., Patwardhan, A. V., Goud, V. V. and Pradhan, N. C.: Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids; Bioresource Technology.99 (2008) 3737–3744. PMid:17764930; 10.1016/j.biortech.2007.07.015Suche in Google Scholar PubMed
27. Yin, D., Ma, P. and Xia, S.: Progress on Methods for measuring surface tension of liquids; Bulletin of Science and Technology.3 (2007) 424–429. 10.13774/j.cnki.kjtb.2007.03.025Suche in Google Scholar
28. Deng, Q. Y., Liu, L. and Deng, M. H.: Spectrum analysis tutorial, Beijing: Beijing Science Press. (2007) 47–57.Suche in Google Scholar
29. Zhao, Z. and Wang, Q.: Progress on methods of measuring surface active agent's critical micelle concentration; Practical Pharmacy and Clinical Remedies.2 (2010). 10.14053/j.cnki.ppcr.2010.02.001Suche in Google Scholar
30. Kumar, D., Neo, K. and Rub, M. A.: Synthesis and characterization of dicationic gemini surfactant micelles and their effect on the rate of ninhydrin-copper-peptide Complex Reaction; Tenside Surfactants Detergents.55 (2018) 78–84. 10.3139/113.110535Suche in Google Scholar
31. Kumar, D., Neo, K. and Rub, M. A.: Dipeptide glycyl-glycine (gly-gly)-ninhydrin reaction: Effect of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16,s = 4, 5, 6) gemini surfactants on the reaction rate; Tenside Surfactants Detergents, 53 (2016) 168–178. 10.3139/113.110422Suche in Google Scholar
32. Zhao, G. X.: Physico-chemistry of surfactants, Beijing: Peking University Press. (1984) 66–82.Suche in Google Scholar
33. Jiao, T., Liu, X., Wang, X. and Niu, J.: Synthesis and properties of dioctyl diphenyl ether disulfonata grmini surfactant; Tenside Surfactants Detergets.53 (2016) 313–318. 10.3139/113.110443Suche in Google Scholar
34. Wang, P. Y., Xu, B. C. and Wang, J.: Surfactant: Synthesis · Performance · Application, Beijing: Chemical Industry Press. (2009) 153–157.Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies