Startseite Naturwissenschaften Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants

  • Qiaoyun Zhang und Wenwei Jiang
Veröffentlicht/Copyright: 13. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The amino acid surfactants were synthesized by using natural fatty acid esters (FAE) as raw materials, but FAE with a high iodine value has thermal and oxidative instabilities in chemical reactions. The oxidation of FAE by peroxyacetic acid generated was studied under various conditions, then the oxidized FAE and different amino acids (glycine, glutamic acid and aspartic acid) were used to form sodium N-acyl amino acids in glycerol. By the surface tension method, the relationship between temperature and critical micelle concentration (CMC) has been researched. The CMC value, the surface tension at the CMC (γCMC), and the maximum surface excess concentration Γmax were calculated, respectively. For different amino acids surfactants, the surface tension of the solution was greatly reduced at the low CMC value, and the γCMC constantly decreases with rising temperature.

Kurzfassung

Die Aminosäuretenside wurden unter Verwendung natürlicher Fettsäureester (FAE) als Ausgangsmaterial synthetisiert, FAE mit hohem Iodwert weist jedoch thermische und oxidative Instabilitäten bei chemischen Reaktionen auf. Die Oxidation von FAE durch erzeugte Peressigsäure wurde unter verschiedenen Bedingungen untersucht, dann wurden die oxidierten FAE und verschiedene Aminosäuren (Glycin, Glutaminsäure und Asparaginsäure) verwendet, um Natrium-N-Acyl-Aminosäuren in Glycerin zu bilden. Durch die Oberflächenspannungsmethode wurde die Beziehung zwischen Temperatur und kritischer Mizellenkonzentration (CMC) untersucht. Der CMC-Wert, die Oberflächenspannung bei der CMC (γCMC), bzw. die maximale Oberflächenüberschusskonzentration Γmax wurden jeweils berechnet. Bei verschiedenen Aminosäuretensiden ist die Oberflächenspannung der Lösung bei niedrigrem CMC-Wert deutlich reduziert und nimmt mit steigender Temperatur stetig ab.


Correspondence address, Wenwei Jiang, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China, E-Mail: , Tel.: 1 36 08 06 75 06

Qiaoyun Zhang is a postgraduate student at Sichuan University and is involved in synthesis and analysis of surfactants.

Wenwei Jiang is a professor at Sichuan University, P. R. China. He has been involved in fine chemical engineering and surfactants for many years.


References

1. Kumar, D. and Rub, M. A.: Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants; Journal of Molecular Liquids.250 (2018) 329334. 10.1016/j.molliq.2017.11.172Suche in Google Scholar

2. Wu, M. H., Wan, L. Z. and Zhang, Y. Q.: A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material; Scientific Reports.4 (2014) 4428. PMid:24651079; 10.1038/srep04428Suche in Google Scholar

3. Reznik, G. O., Vishwanath, P., Pynn, M. A., Sitnik, J. M., Todd, J. J., Wu, J., Jiang, Y., Keenan, B. G., Castle, A. B., Haskell, R. F., Smith, T. F., Somasundaran, P. and Jarrell, K. A.: Use of sustainable chemistry to produce an acyl amino acid surfactant; Applied Microbiology Biotechnology, 86 (2010) 13871397. PMid:20094712; 10.1007/s00253-009-2431-8Suche in Google Scholar

4. Adak, S. and Banerjee, R.: A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant; 150 (2016) 359368. PMid:27312646; 10.1016/j.carbpol.2016.05.038Suche in Google Scholar

5. Bordes, R. and Holmberg, K.: Amino acid-based surfactants – do they deserve more attention?Advances in Colloid and Interface Science.222 (2015) 7991. PMid:25846628; 10.1016/j.cis.2014.10.013Suche in Google Scholar

6. Morán, M. C., Pinazo, A., Pérez, L., Clapés, P., Angelet, M., García, M. T., Vinardell, M. P. and Infante, M. R.: “Greenamino acid-based surfactant; Green Chemistry.6 (2004) 233240. 10.1039/b400293hSuche in Google Scholar

7. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena, Fourth Edition. Wiley (2012). 10.1002/9781118228920Suche in Google Scholar

8. Derawi, D. and Salimon, J.: Optimization on epoxidation of palm olein by using performic acid; E-Journal of Chemistry.7 (2010) 14401448. 10.1155/2010/384948Suche in Google Scholar

9. Adhvaryu, A. and Erhan, S. Z.: Epoxidized soybean oil as a potential source of high-temperature lubricants∗ 1; Industrial Crops & Products.15 (2002) 247254. 10.1016/s0926-6690(01)00120-0Suche in Google Scholar

10. Campanella, A., Fontanini, C. and Baltanás, M. A.: High yield epoxidation of fatty acid methyl esters with performic acid generated in situ; Chemical Engineering Journal.144 (2008) 466475. 10.1016/j.cej.2008.07.016Suche in Google Scholar

11. Warwel, S. and Rüsch gen, Klaas M.: Chemo-enzymatic epoxidation of unsaturated carboxylic acids; Journal of Molecular Catalysis B: Enzymatic.1 (1995) 2935. 10.1016/1381-1177(95)00004-6Suche in Google Scholar

12. Sharpless, K. B. and Woodard, S. S.: On the mechanism of titanium-tartrate catalyzed asymmetric epoxidation; Pure and Applied Chemistry.55 (1983) 18231836. 10.1351/pac198355111823Suche in Google Scholar

13. Goud, V. V., Pradhan, N. C. and Patwardhan, A. V.: Epoxidation of karanja (Pongamia glabra) oil by H2O2; Journal of the American Oil Chemists’ Society.83 (2006) 635640. 10.1007/s11746-006-1250-7Suche in Google Scholar

14. Janković, M. and Sinadinović-Fišer, S.: Prediction of the chemical equilibrium constant for peracetic acid formation by hydrogen peroxide; Journal of the American Oil Chemists’ Society.82 (2005) 301303. 10.1007/s11746-005-1070-9Suche in Google Scholar

15. Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S. and Yang, L.: Studies on the kinetics of in situ epoxidation of vegetable oils; European Journal of Lipid Science and Technology.110 (2008) 341346. 10.1002/ejlt.200700104Suche in Google Scholar

16. Rüsch gen, Klaas M. and Warwel, S.: Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis; Industrial Crops and Products.9 (1999) 125132. 10.1016/s0926-6690(98)00023-5Suche in Google Scholar

17. Kumar, D., Rub, M. A., Azum, N. and Asiri, A. M.: Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini); Journal of Physical Organic Chemistry.31 (2018) e3730. 10.1002/poc.3730Suche in Google Scholar

18. Kumar, D. and Rub, M. A.: Kinetic study of nickel-glycylglycine with ninhydrin in alkanediyl-α,ω-gemini (m-s-m type) surfactant system; Journal of Molecular Liquids.240 (2017) 253257. 10.1016/j.molliq.2017.05.088Suche in Google Scholar

19. Tripathy, D. B., Mishra, A., Clark, J. and Farmer, T.: Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review; Comptes Rendus Chimie.21 (2018) 112130. 10.1016/j.crci.2017.11.005Suche in Google Scholar

20. Infante, M. R., Pérez, L., Morán, M. C., Pons, R., Mitjans, M., Vinardell, M. P., Garcia, M. T. and Pinazo, A.: Biocompatible surfactants from renewable hydrophiles; European Journal of Lipid Science and Technology.112 (2010) 110121. 10.1002/ejlt.200900110Suche in Google Scholar

21. Campanella, A., Fontanini, C. and Baltanás, M. A.: High yield epoxidation of fatty acid methyl esters with performic acid generated in situ; Chemical Engineering Journal.144 (2008) 466475. 10.1016/j.cej.2008.07.016Suche in Google Scholar

22. Rangarajan, B., Havey, A., Grulke, E. A. and CulnanP. D.: Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil; Journal of the American Oil Chemists’ Society.72 (1995) 11611169. 10.1007/bf02540983Suche in Google Scholar

23. Liu, Q., Hu, X. and Fang, Y.: Synthesis of sodium N-lauroylglycinate from methyl laurate and sodium glycinate in glycerol; Fine Chemicals.07 (2016) 768771. 10.13550/j.jxhg.2016.07.009Suche in Google Scholar

24. Zhao, X., Zhang, T., Zhou, Y. and Liu, D.: Preparation of peracetic acid from acetic acid and hydrogen peroxide: Experimentation and modeling; The Chinese Journal of Process Engineering.8 (2008) 3541. 10.3321/j.issn:1009-606X.2008.01.007Suche in Google Scholar

25. Wang, D. S., Zhuo, C. and Wu, D. J.: Preparation and application of peracetic acid in pharmaceutical synthesis; Chinese Journal of Synthetic Chemistry.8 (2000) 2228. 10.3969/j.issn.1005-1511.2000.01.006Suche in Google Scholar

26. Dinda, S., Patwardhan, A. V., Goud, V. V. and Pradhan, N. C.: Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids; Bioresource Technology.99 (2008) 37373744. PMid:17764930; 10.1016/j.biortech.2007.07.015Suche in Google Scholar PubMed

27. Yin, D., Ma, P. and Xia, S.: Progress on Methods for measuring surface tension of liquids; Bulletin of Science and Technology.3 (2007) 424429. 10.13774/j.cnki.kjtb.2007.03.025Suche in Google Scholar

28. Deng, Q. Y., Liu, L. and Deng, M. H.: Spectrum analysis tutorial, Beijing: Beijing Science Press. (2007) 4757.Suche in Google Scholar

29. Zhao, Z. and Wang, Q.: Progress on methods of measuring surface active agent's critical micelle concentration; Practical Pharmacy and Clinical Remedies.2 (2010). 10.14053/j.cnki.ppcr.2010.02.001Suche in Google Scholar

30. Kumar, D., Neo, K. and Rub, M. A.: Synthesis and characterization of dicationic gemini surfactant micelles and their effect on the rate of ninhydrin-copper-peptide Complex Reaction; Tenside Surfactants Detergents.55 (2018) 7884. 10.3139/113.110535Suche in Google Scholar

31. Kumar, D., Neo, K. and Rub, M. A.: Dipeptide glycyl-glycine (gly-gly)-ninhydrin reaction: Effect of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) (16-s-16,s = 4, 5, 6) gemini surfactants on the reaction rate; Tenside Surfactants Detergents, 53 (2016) 168178. 10.3139/113.110422Suche in Google Scholar

32. Zhao, G. X.: Physico-chemistry of surfactants, Beijing: Peking University Press. (1984) 6682.Suche in Google Scholar

33. Jiao, T., Liu, X., Wang, X. and Niu, J.: Synthesis and properties of dioctyl diphenyl ether disulfonata grmini surfactant; Tenside Surfactants Detergets.53 (2016) 313318. 10.3139/113.110443Suche in Google Scholar

34. Wang, P. Y., Xu, B. C. and Wang, J.: Surfactant: Synthesis · Performance · Application, Beijing: Chemical Industry Press. (2009) 153157.Suche in Google Scholar

Received: 2018-10-08
Accepted: 2019-02-03
Published Online: 2019-11-13
Published in Print: 2019-11-15

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110649/html
Button zum nach oben scrollen