Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
-
Shengfu Duan
, Yajie Jiang , Tao Geng , Hongbin Ju and Yakui Wang
Abstract
A new type of catanionic surfactant phosphonium benzene sulfonate was synthesized by quaternization of triphenyl phosphine with dimethyl carbonate and followed by anion exchange with alkyl benzene sulfonic acid. The molecular structure was characterized by FT-IR, 1H-NMR, and 31P-NMR. The thermal stability of phosphonium benzene sulfonate was evaluated by thermogravimetric analysis (TGA). Its surface properties were studied systematically through equilibrium surface tension, electrical conductivity, and dynamic surface tension measurements. The wettability, foam properties, and emulsification of phosphonium benzene sulfonate were estimated in this paper. TGA results revealed that it has an excellent thermostability and could be used below 350 °C. Equilibrium surface tension results indicated that it has a low critical micelle concentration (CMC, about 0.10 mmol/L), lower than that of ammonium benzene sulfonate and sodium dodecyl benzene sulfonate. Furthermore, the micellization of phosphonium benzene sulfonate in aqueous solution is an entropy-driven spontaneous process. The adsorption process of phosphonium benzenesulfonate at the air-liquid interface is controlled by hybrid kinetic adsorption. Moreover, it has excellent wetting and emulsifying properties and low foam properties.
Kurzfassung
Ein neues katanionisches Tensid, Phosphoniumbenzensulfonat, wurde durch Quaternisierung von Triphenylphosphin mit Dimethylcarbonat und anschließendem Anionenaustausch mit Alkylbenzensulfonsäure synthetisiert. Die Molekülstruktur wurde durch FT-IR, 1H-NMR und 31P-NMR charakterisiert. Die thermische Stabilität von Phosphoniumbenzensulfonat wurde mittels thermogravimetrischer Analyse (TGA) ermittelt. Die Oberflächeneigenschaften des Tensids wurden systematisch durch Messungen der Gleichgewichts-Oberflächenspannung, der elektrischen Leitfähigkeit und der dynamischen Oberflächenspannung untersucht. Ebenso wurden die Benetzbarkeit, die Schaumeigenschaften und die Emulgierung von Phosphoniumbenzensulfonat bestimmt. Die TGA-Messung ergab, dass das Tensid eine ausgezeichnete Thermostabilität aufweist und unterhalb von 350 °C verwendet werden kann. Die Messungen der Gleichgewichtsoberflächenspannung zeigten, dass das Tensid eine kritische Mizellenbildungskonzentration ((CMC) von etwa 0,10 mmol/L) aufweist, die niedriger ist als die von Ammoniumbenzensulfonat und Natriumdodecylbenzensulfonat. Darüber hinaus ist die Mizellenbildung von Phosphoniumbenzensulfonat in wässriger Lösung ein spontaner, entropiegetriebener Prozess. Die Adsorption von Phosphoniumbenzensulfonat an der Luft-Flüssigkeits-Grenzfläche wird durch kinetische Hybridadsorption gesteuert. Darüber hinaus weist das Tensid ausgezeichnete Benetzungs- und Emulgiereigenschaften und geringe Schaumeigenschaften auf.
References
1. Khan, A. and Marques, E.: Catanionic surfactants, SpringerNetherlands. 1997. 10.1007/978-94-009-1557-2_3Search in Google Scholar
2. Scott, A. B., Tartar, H. V. and Lingafelter, E. C.: Electrolytic Properties of Aqueous Solutions of Octyltrimethylammonium Octanesulfonate and Decyltrimethylammonium Decanesulfonate, J. Am. Chem. Soc.65 (1943) 698–701. 10.1021/ja01244a054Search in Google Scholar
3. Jokela, P., Jönsson, B. and Khan, A.: Phase equilibria of catanionic surfactant-water systems, J. Phys. Chem.91 (1987) 3291–3298. 10.1021/j100296a037Search in Google Scholar
4. Eastoe, J., Dalton, J., Rogueda, P., Sharpe, D., Dong, J. and Webster, J. R. P.: Interfacial Properties of a Catanionic Surfactant, Langmuir12 (1996) 2706–2711. 10.1021/la960123qSearch in Google Scholar
5. Wang, C., Cao, X. L., Guo, L. L., Xu, Z. C., Zhang, L., Gong, Q. T., Zhang, L. and Zhao, S.: Effect of adsorption of catanionic surfactant mixtures on wettability of quartz surface, Colloids Surf., A509 (2016) 564–573. 10.1016/j.colsurfa.2016.09.057Search in Google Scholar
6. Dai, C., Yang, Z., Yang, H., Liu, Y., Fang, J., Chen, W., Li, W. and Zhao, M.: Micelle-to-vesicle transition induced by β-cyclodextrin in mixed catanionic surfactant solutions, Colloids Surf., A498 (2016) 1–6. 10.1016/j.colsurfa.2016.03.040Search in Google Scholar
7. Mahle, A., Dashaputre, N., DeShong, P. and Stein, D. C.: Catanionic Surfactant Vesicles as a New Platform for Probing Glycan–Protein Interactions, Adv. Funct. Mater.28 (2018) 1–9. PMid:31118878; 10.1002/adfm.201706215Search in Google Scholar PubMed PubMed Central
8. Zemb, T., Dubois, M., Demé, B. and Gulik-Krzywicki, T.: Self-Assembly of Flat Nanodiscs in Salt-Free Catanionic Surfactant Solutions, Science283 (1999) 816–819. PMid:9933158; 10.1126/science.283.5403.816Search in Google Scholar PubMed
9. Lootens, D., Vautrin, C., Van Damme, H. and Zemb, T.: Facetted hollow silica vesicles made by templating catanionic surfactant vesicles, J. Mater. Chem.13 (2003) 2072–2074. 10.1039/B305808PSearch in Google Scholar
10. Dubois, M., Demé, B., Gulik-Krzywicki, T., Dedieu, J. C., Vautrin, C., Désert, S., Perez, E. and Zemb, T.: Self-assembly of regular hollow icosahedra in salt-free catanionic solutions, Nature411 (2001) 672–675. PMid:11395764; 10.1038/35079541Search in Google Scholar PubMed
11. Shi, H., Qi, L., Ma, J., Cheng, H. and Zhu, B.: Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts in Catanionic Reverse Micelles, Adv. Mater.15 (2003) 1647–1651. 10.1002/adma.200305625Search in Google Scholar
12. Zhang, H., Li, H., Li, D. and Meng, S.: Synthesis and characterization of ultrafine CeF3 nanoparticles modified by catanionic surfactant via a reverse micelles route, J. Colloid Interface Sci.302 (2006) 509–515. PMid:16876811; 10.1016/j.jcis.2006.06.062Search in Google Scholar PubMed
13. Kim, Y., Hong, S., Jung, S., Strano, M. S., Choi, J. and Baik, S.: Dielectrophoresis of Surface Conductance Modulated Single-Walled Carbon Nanotubes Using Catanionic Surfactants, J. Phys. Chem. B110 (2006) 1541–1545. PMid:16471712; 10.1021/jp055110cSearch in Google Scholar PubMed
14. Shi, H., Qi, L., Ma, J. and Cheng, H.: Synthesis of single crystal BaWO4 nanowires in catanionic reverse micelles, Chem. Commun.0 (2002) 1704–1705. PMid:12196958; 10.1039/B204995CSearch in Google Scholar
15. Dias, R. S., Lindman, B. and Miguel, M. G.: Compaction and Decompaction of DNA in the Presence of Catanionic Amphiphile Mixtures, J. Phys. Chem. B106 (2002) 12608–12612. 10.1021/jp020392rSearch in Google Scholar
16. Kang, W., Liu, F., Su, Y., Wang, D. and Shen, Q.: The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances, CrystEngComm13 (2011) 4174–4180. 10.1039/C1CE05319ASearch in Google Scholar
17. Ghosh, S., Ray, A., Pramanik, N. and Ambade, B.: Can a catanionic surfactant mixture act as a drug delivery vehicle?, C. R. Chim.19 (2016) 951–954. 10.1016/j.crci.2016.03.020Search in Google Scholar
18. Dhawan, V. V. and Nagarsenker, M. S.: Catanionic systems in nanotherapeutics – Biophysical aspects and novel trends in drug delivery applications, J. Controlled Release266 (2017) 331–345. PMid:28989087; 10.1016/j.jconrel.2017.09.040Search in Google Scholar PubMed
19. Ruiz, A., Pinazo, A., Pérez, L., Manresa, A. and Marqués, A. M.: Green Catanionic Gemini Surfactant–Lichenysin Mixture: Improved Surface, Antimicrobial, and Physiological Properties, ACS Appl. Mater. Interfaces9 (2017) 22121–22131. PMid:28636319; 10.1021/acsami.7b03348Search in Google Scholar PubMed
20. Ju, H., Jiang, Y., Geng, T. and Wang, Y.: A green and easy synthesis method of catanionic surfactant ammonium benzene sulfonate and its surface properties and aggregation behaviors, J. Mol. Liq.264 (2018) 306–313. 10.1016/j.molliq.2018.05.034Search in Google Scholar
21. Jiao, J., Zhang, Y., Fang, L., Yu, L., Sun, L., Wang, R. and Cheng, N.: Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution, J. Colloid Interface Sci.402 (2013) 139–145. PMid:23642809; 10.1016/j.jcis.2013.03.027Search in Google Scholar PubMed
22. Jiao, J., Dong, B., Zhang, H., Zhao, Y., Wang, X., Wang, R. and Yu, L.: Aggregation Behaviors of Dodecyl Sulfate-Based Anionic Surface Active Ionic Liquids in Water, J. Phys. Chem. B116 (2012) 958–965. PMid:22204280; 10.1021/jp209276cSearch in Google Scholar PubMed
23. Fraser, K. J. and MacFarlane, D. R.: Phosphonium-Based Ionic Liquids: An Overview, Aust. J. Chem.62 (2009) 309–321. 10.1071/CH08558Search in Google Scholar
24. Duan, S., Jiang, Y., Geng, T., Ju, H., and Wang, Y.: Wetting, foaming, and emulsification properties of novel methyltriphenylphosphonium carboxylate ionic liquid surfactants, J. Dispersion Sci. Technol.10.1080/01932691.2018.1541416Search in Google Scholar
25. Fu, H., Li, Y., Song, Y. and Li, J.: Synthesis and properties of cocotriethoxylpropanediamine oxide, J. Dispersion Sci. Technol.38 (2017) 1421–1426. 10.1080/01932691.2016.1250217Search in Google Scholar
26. Niu, R. X., He, J. Y., Long, B., Wang, D. Q., Song, H., Wang, C. and Qu, G. M.: Adsorption, wetting, foaming, and emulsification properties of mixtures of nonylphenol dodecyl sulfonate based on linear alpha-olefin and heavy alkyl benzene sulfonate, J. Dispersion Sci. Technol.39 (2018) 1108–1114. 10.1080/01932691.2017.1383267Search in Google Scholar
27. Xu, Q., Wang, L. and Xing, F.: Synthesis and Properties of Dissymmetric Gemini Surfactants, J. Surfactants Deterg.14 (2011) 85–90. PMid:21841907; 10.1007/s11743-010-1207-6Search in Google Scholar PubMed PubMed Central
28. Li, P., Du, Z., Ma, X., Wang, G. and Li, G.: Synthesis, adsorption and aggregation properties of trisiloxane room-temperature ionic liquids, J. Mol. Liq.192 (2014) 38–43. 10.1016/j.molliq.2013.12.046Search in Google Scholar
29. Xu, W., Zhang, Q., Wei, H., Qin, J. and Yu, L.: Self-Aggregation of Catanionic Surface Active Ionic Liquids in Aqueous Solutions, J. Surfactants Deterg.18 (2015) 421–428. 10.1007/s11743-014-1666-2Search in Google Scholar
30. Zhang, C., Luo, J., Pan, C. and Yu, G.: Determination of Critical Micelle Concentration of Sodium Dodecyl Benzene Sulfonate by Spectrometry, Environ. Sci. Technol.39 (2016) 99–102; (in Chinese).Search in Google Scholar
31. Shen, J., Bai, Y., Tai, X., Wang, W. and Wang, G.: Surface Activity, Spreading, and Aggregation Behavior of Ecofriendly Perfluoropolyether Amide Propyl Betaine in Aqueous Solution, ACS Sustainable Chem. Eng.6 (2018) 6183–6191. 10.1021/acssuschemeng.7b04895Search in Google Scholar
32. Li, N., Zhang, S., Zheng, L., Wu, J., Li, X. and Yu, L.: Aggregation Behavior of a Fluorinated Surfactant in 1-Butyl-3-methylimidazolium Ionic Liquids, J. Phys. Chem. B112 (2008) 12453–12460. PMid:18783195; 10.1021/jp8054872Search in Google Scholar
33. Wang, X., Long, P., Dong, S. and Hao, J.: First Fluorinated Zwitterionic Micelle with Unusually Slow Exchange in an Ionic Liquid, Langmuir29 (2013) 14380–14385. PMid:24175708; 10.1021/la402937wSearch in Google Scholar
34. Pino, V., Yao, C. and Anderson, J. L.: Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures, J. Colloid Interface Sci.333 (2009) 548–556. PMid:19268964; 10.1016/j.jcis.2009.02.037Search in Google Scholar
35. Nazemi, T. and Sadeghi, R.: Effect of polar organic solvents on the surface adsorption and micelle formation of surface active ionic liquid 1-dodecyl-3-methylimidazolium bromide in aqueous solutions and comparison with the traditional cationic surfactant dodecyltrimethylammonium bromide, Colloids Surf., A462 (2014) 271–279. 10.1016/j.colsurfa.2014.09.010Search in Google Scholar
36. Shen, J., Bai, Y., Yin, Q., Wang, W., Ma, X. and Wang, G.: Adsorption, aggregation and wetting behaviors of biodegradable surfactant: Perfluoropolyether quaternary ammonium salt, J. Ind. Eng. Chem.56 (2017) 82–89. 10.1016/j.jiec.2017.06.048Search in Google Scholar
37. Shah, S. S., Jamroz, N. U. and Sharif, Q. M.: Micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate (SDS) at different temperatures, Colloids Surf., A178 (2001) 199–206. 10.1016/S0927-7757(00)00697-XSearch in Google Scholar
38. Inoue, T., Ebina, H., Dong, B. and Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution, J. Colloid Interface Sci.314 (2007) 236–241. PMid:17574264; 10.1016/j.jcis.2007.05.052Search in Google Scholar
39. Long, P., Chen, J., Wang, D., Hu, Z., Gao, X., Li, Z. and Hao, J.: Influence of Counterions on Micellization of Tetramethylammonium Perfluorononanoic Carboxylate in 1-Butyl-3-methylimidazolium Ionic Liquid, J. Phys. Chem. B116 (2012) 7669–7675. PMid:22690854; 10.1021/jp300733xSearch in Google Scholar
40. Stodghill, S. P., Smith, A. E. and O’Haver, J. H.: Thermodynamics of Micellization and Adsorption of Three Alkyltrimethylammonium Bromides Using Isothermal Titration Calorimetry, Langmuir20 (2004) 11387–11392. PMid:15595761; 10.1021/la047954dSearch in Google Scholar
41. Aksenenko, E. V., Makievski, A. V., Miller, R. and Fainerman, V. B.: Dynamic surface tension of aqueous alkyl dimethyl phosphine oxide solutions: Effect of the alkyl chain length, Colloids Surf., A143 (1998) 311–321. 10.1016/S0927-7757(98)00239-8Search in Google Scholar
42. Eastoe, J. and Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface, Adv. Colloid Interface Sci.85 (2000) 103–144. 10.1016/S0001-8686(99)00017-2Search in Google Scholar
43. Jiang, Y., Geng, T., Li, Q., Li, G. and Ju, H.: Equilibrium and dynamic surface tension properties of salt-free catanionic surfactants with different hydrocarbon chain lengths, J. Mol. Liq.204 (2015) 126–131. 10.1016/j.molliq.2015.01.026Search in Google Scholar
44. Rosen, M. J. and Hua, X. Y.: Dynamic surface tension of aqueous surfactant solutions: 2. Parameters at 1 s and at mesoequilibrium, J. Colloid Interface Sci.139 (1990) 397–407. 10.1016/0021-9797(90)90114-4Search in Google Scholar
45. Ward, A. F. H. and Tordai, L.: Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects, J. Chem. Phys.14 (1946) 453–461. 10.1063/1.1724167Search in Google Scholar
46. Fainerman, V. B., Makievski, A. V. and Miller, R.: The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory, Colloids Surf., A87 (1994) 61–75. 10.1016/0927-7757(94)02747-1Search in Google Scholar
47. Babu, K., Pal, N., Bera, A., Saxena, V. K. and Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery, Appl. Surf. Sci.353 (2015) 1126–1136. 10.1016/j.apsusc.2015.06.196Search in Google Scholar
48. Bai, L., Liu, X., Jiao, T., Huo, Y. and Niu, J.: Interfacial tension, wettability, foam and emulsification properties of mono- and di-tetrapropylene diphenyl ether disulfonates, J. Dispersion Sci. Technol.39 (2018) 1447–1453. 10.1080/01932691.2017.1414611Search in Google Scholar
49. Yan, H., Li, Q., Geng, T., JiangY. and Luo, Y.: Preparation and performance of catanionic surfactants, Tenside Surf. Det.49 (2012) 211–215. 10.3139/113.110184Search in Google Scholar
50. Yan, H., Li, Q., Geng, T. and JiangY.: Synthesis and Properties of Tetradecyltrimethylammonium Carboxylates, J. Dispersion Sci. Technol.34 (2013) 111–116. 10.1080/01932691.2011.653924Search in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Articles in the same Issue
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies