Home Physical Sciences Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
Article
Licensed
Unlicensed Requires Authentication

Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate

  • Sadia Noor and Muhammad Abid Rashid
Published/Copyright: November 13, 2019
Become an author with De Gruyter Brill

Abstract

Micellar solubilization and physicochemical behaviour of [Ni(phen)3]F2 EtOH · MeOH · 8 H2O complex in sodium 2-ethylhexyl sulfate and sodium bis(2-ethyl hexyl) sulfosuccinate is addressed in this paper. The interactions of surfactants in the solution of nickel complex were studied by UV-Vis spectroscopy and electrical conductivity. The extent of solubilization in terms of partitioning and binding parameters was determined by UV-Vis spectroscopy, whereas conductivity data were employed to calculate critical micellar concentration and other thermodynamic parameters of micellization. The value of critical micellar concentration increased in both surfactants due to structure breaking effect of nickel complex. The complex showed significant antioxidant radical scavenging and hemolytic activities, without any substantial cytotoxic activity against 3T3 cell line.

Kurzfassung

Die mizellare Solubilisierung und das physikochemische Verhalten des [Ni(phen)3]F2 EtOH · MeOH · 8 H2O-Komplexes in Natrium-2-ethylhexylsulfat und Natrium-bis-(2-ethylhexyl)sulfosuccinat werden in diesem Paper behandelt. Die Wechselwirkungen von Tensiden in der Nickelkomplexlösung wurden mittels UV-Vis-Spektroskopie und elektrischer Leitfähigkeit untersucht. Das Ausmaß der Solubilisierung hinsichtlich der Verteilungs- und Bindungsparameter wurde durch UV-Vis-Spektroskopie bestimmt, wohingegen Leitfähigkeitsdaten verwendet wurden, um die kritische Mizellenbildungskonzentration und weitere thermodynamische Parameter der Mizellenbildung zu berechnen. Der Wert der kritischen Mizellenbildungskonzentration stieg für beide Tenside aufgrund der strukturaufbrechenden Wirkung des Nickelkomplexes an. Der Komplex zeigte signifikante antioxidative Radikalfänger- und hämolytische Aktivitäten ohne wesentliche zytotoxische Aktivität gegenüber der 3T3-Zelllinie.


Correspondence address, Dr. Muhammad Abid Rashid, University of Agriculture, Department of Chemistry, Faisalabad, Pakistan, E-Mail:

Sadia Noor completed her M.Phil in Chemistry from University of Agriculture Faisalabad, Pakistan in 2013. Currently, she is conducting her research degree with Dr. Rashid on the intramolecular gold cyclized of o-alkyenyl systenes, synthesis of polysulfanes and solubilization of nickel complex. She also worked with Prof. George Baranay at Department of Chemistry university of Minnesota USA and with Prof. Roberto Sanz at Departmento de Química. Área de Química Orgánica. Universidad de Burgos, Burgos, Spain. She has contributed to six research publications. Her research is focused on the synthesis and characterization of gold catalyzed transformations, metal complexes, dyes and other organic complexes.

Dr. Muhammad Abid Rashid completed his doctoral degree with Prof. P. Langer in 2008 from “Institut für Chemie, Abteilung Organische Chemie Universität Rostock, Germany”. He also worked as research associate with Prof. Viqar Uddin Ahmad at HEJ Research Institute of Chemistry, University of Karachi, Pakistan since 2002 – 2006. Dr. Rashid was involved with Prof. Armido Studer as postdoctoral fellow at “Organische-Chemisches Institut Westfälische Wilhelms Universität Münster, Germany”. Dr. Rashid also pursued his post doctral studies with Prof. Ilhong Ryu at Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakia, Osaka, Japan and with Prof. Roberto Sanz at “Dpto. de Química. Área de Química Orgánica. Universidad de Burgos, Burgos, Spain”. Currently, he is working as Assistant Professor since 2011 at Department of Chemistry, University of Agriculture Faisalabad, Pakistan. He is author/co-author of 47 publications in reputed journals. His main research is based on the development of new methodologies in Organic synthesis. His group is also involved in solubilization of transition metal complexed/drugs with surfactants. He also successfully completed one project awarded by Higher Education Commission Pakistan. Concurrently, working on 02 more projects related to gold chemistry by Higher Education Commission Pakistan is going on. His main research interests include development of new methodology for the synthesis of pharmacological relevance molecules based on unusual intermediates, formulation of new drug delivery system and isolation and structure elucidation of natural products.


References

1. Chin, L. F., Kong, S. M., Seng, H. L., Khoo, K. S., Vikneswaran, R., Teoh, S. G., Ahmad, M., Khoo, S. B. A., Maah, M. J. and Ng, C. H.: Synthesis, characterization and biological properties of cobalt (II) complexes of 1, 10-phenanthroline and maltol, J. Inorg. Biochem.105 (2011) 339347. PMid:21421121; 10.1016/j.jinorgbio.2010.11.018Search in Google Scholar PubMed

2. Tabrizi, L., McArdle, P., Ektefan, M. and Chiniforoshan, H.: Synthesis, crystal structure, spectroscopic and biological properties of mixed ligand complexes of cadmium (II), cobalt (II) and manganese (II) valproate with 1, 10-phenanthroline and imidazole, Inorg. Chimi. Acta.439 (2016) 138144. 10.1016/j.ica.2015.10.015Search in Google Scholar

3. Usman, M. and Siddiq, M.: Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin, J. Chem. Thermodyn.58 (2013) 359366. 10.1016/j.jct.2012.11.022Search in Google Scholar

4. Usman, M. and Siddiq, M.: Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin, Spectrochim. Acta.113 (2013) 182190. PMid:23727671; 10.1016/j.saa.2013.04.089Search in Google Scholar PubMed

5. Taboada, P., Ruso, J. M., Garcia, M. and Mosquera, V.: Surface properties of some amphiphilic antidepressant drugs, Colloids Surf. A.179 (2001) 125128. 10.1016/S0927-7757(00)00730-5Search in Google Scholar

6. Yu, G.-J., Chen, X.-Y., Mao, S.-Z., Liu, M.-L. and Du, Y.-R.: Hydrophobic terminal group of surfactant initiating micellization as revealed by 1H NMR spectroscopy Chin. Chem. Let.28 (2017) 14131416. 10.1016/j.cclet.2017.04.013Search in Google Scholar

7. Čudina, O., Brborić, J., Janković, I., Karljiković-Rajić, K. and Vladimirov, S.: Study of valsartan interaction with micelles as a model system for biomembranes, Colloids Surf. A: Physicochem. Eng. Asp.65 (2008) 8084. PMid:18439806; 10.1016/j.colsurfb.2008.03.002Search in Google Scholar PubMed

8. Saeed, R., Usman, M., Mansha, A., Rasool, N., Naqvia, S. A. R., Zahoor, A. F., Rahman, H. M. A., Rana, U. A. and Al-Zahrani, E.: Partitioning of structurally related thiophene derivatives betweensolvent and micellar media of anionic surfactant sodium dodecylsulphateColloids Surf. B.: Physicochem. Eng. Asp.512 (2017) 5160. 10.1016/j.colsurfa.2016.10.016Search in Google Scholar

9. Younas, N., Rashid, M. A., Usman, M., Nazir, S., Noor, S., Basit, A. and Jamil, M.: Solubilization of Ni imidazole complex in micellar media of anionic surfactants, sodium dodecyl sulfate and sodium stearate, J. Surf. Det.20 (2017) 13111320. 10.1007/s11743-017-1997-xSearch in Google Scholar

10. Younas, N., Rashid, M. A., Nazir, S., Usman, M., Sarfraz, R. A., Jamil, A. and Whitwod, A. C.: Spectroscopic and conductometric study of interaction of anionic surfactants with[Co(phen)3]F2 · 2H2O complex, J. Mol. Liq.240 (2017) 351360; 10.1016/j.molliq.2017.05.052. 10.1016/j.molliq.2017.05.052Search in Google Scholar

11. Noor, S., Younas, N., Rashid, M. A., Nazir, S., Usman, M. and Naz, T.: Spectroscopic, conductometric and biological investigation Of [Ni(phen)3]F2 · EtOH · MeOH · 8 H2O complex in anionic micellar media, Colloid Interface Sci. Commun.27 (2018) 2634. 10.1016/j.colcom.2018.09.004Search in Google Scholar

12. Arif, M., Chohan, Z. H., Bukhari, I. H., Anjum, S. and Tariq, R. H.: Fluoride-Water Hydrogen Bonding: X-Ray Structure Of Tris(1, 10-Phenanthroline) Nickel (II) Fluoride-Ethanol (1/2) Methanol (1/2) Octahydrate, Rev. Inorg. Chem.26 (2006) 379384. 10.1515/REVIC.2006.26.4.379Search in Google Scholar

13. Arif, M., Nazir, S., Iqbal, M. S. and Anjum, S.: Synthesis and characterization of transition metal fluoride complexes with imidazole: X-ray crystal structure reveals short hydrogen bonds between lattice water and lattice fluoride, Inorg. Chimi. Acta.362 (2009) 16241628; 1624. 10.1016/j.ica.2008.08.035Search in Google Scholar

14. Nazir, S., Rashid, M. A., Arif, M., Romerosa, A. and Whitwood, A. C.: Metal backbone Polymers [M(isn-κNpy)4(μ-SiF6-κF,F′)]n (M=Cu, Co, Ni; isn = isonicotinamide) containing an unusual hexafluoridosilicato bridge, Inorg. Chim Acta.427 (2015) 198202. 10.1016/j.ica.2014.12.020Search in Google Scholar

15. Nazir, S., Arif, M., Rashid, M. A. and Whitwood, A. C.: Structure of [Co(im)6]SiF6: short hydrogen bonds involving SiF62– ions, Chinese J. Struc. Chem.36 (2017) 965970. 10.14102/j.cnki.0254-5861.2011-1384Search in Google Scholar

16. Chambers, J. F., Stokes, J. M. and Stokes, R. H.: Conductances of concentrated aqueous sodium and potassium chloride solutions at 25, J. Phys. Chem. A.60 (1956) 985986. 10.1021/j150541a040Search in Google Scholar

17. Shedlovsky, T.: The electrolytic conductivity of some uni-univalent electrolytes in water at 25, J. Am. Chem. Soc.54 (1932) 14111428. 10.1021/ja01343a020Search in Google Scholar

18. Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. and Akbarsha, M. A.: Mixed ligand copper (II) complexes of 1, 10-phenanthroline with tridentate phenolate/pyridyl/(benz) imidazolyl Schiff base ligands: Covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity, J. Inorg. Biochem.140 (2014) 255268. PMid:25199844; 10.1016/j.jinorgbio.2014.07.016Search in Google Scholar PubMed

19. Shalel, S., Streichman, S. and Marmu, A.: The Mechanism of Hemolysis by Surfactants: Effect of Solution Composition, J. Colloid. Interface Sci.252 (2002) 6676. PMid:16290763; 10.1006/jcis.2002.8474Search in Google Scholar PubMed

20. Dickson, F. M., Lawrence, J. N. and Benford, D. J.: Surfactant-induced cytotoxicity in cultures of human keratinocytes and a commercially available cell line (3T3), Toxicol. in Vitro.7 (1993). 381–384. 10.1016/0887-2333(93)90031-YSearch in Google Scholar PubMed

21. Usman, M., Cheema, M. A., Khan, A., Farooqi, Z. H., Mosquera, V. and Siddiq, M.: A comparative study of thermodynamic properties of structurally related phenothiazine drugs in aqueous solution, J. Chil. Chem. Soc.58 (2013) 18421845. 10.4067/S0717-97072013000300010Search in Google Scholar

22. Hanif, S., Usman, M., Hussain, A., Rasool, N., Zubair, M. and Rana, U. A.: Solubilization of Benzothiazole (BNZ) by micellar media of Sodium dodecyl sulphate and Cetyl trimethylammonium bromide, J. Mol. Liq.211 (2015) 714. 10.1016/j.molliq.2015.06.018Search in Google Scholar

23. Mehta, S. K., Bhasin, K. K., Kumar, A. and Dham, S.: Micellar behavior of dodecyldimethylethyl ammonium bromide and dodecyltrimethylammonium chloride in aqueous media in the presence of diclofenac sodium, Colloids Surf. A.278 (2006) 1722. 10.1016/j.colsurfa.2005.11.071Search in Google Scholar

24. Sharma, R. and Jani, D.: Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation. Tenside Surfact. Det.50 (2013) 283288. 10.3139/113.110261Search in Google Scholar

25. Ali, A., Uzair, S. and Farooq, U.: Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies. Tenside Surfact. Det.54 (2017) 342352. 10.3139/113.110509Search in Google Scholar

26. Irfan, M., Usman, M., Mansha, A., Rasool, N., Ibrahim, M., Rana, U. A., Siddiq, M., Zia-Ul-Haq, M., Jaafar, H. Z. and Khan, S. U. D.: Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution, Sci. World J.2014 (2014) 18. PMid:25243216; 10.1155/2014/540975Search in Google Scholar PubMed PubMed Central

27. Hao, L. S., Deng, Y. T., Zhou, L.S., Ye, H., Nan, Y. Q. and Hu, P.: Mixed micellization and the dissociated margules model for cationic/anionic surfactant systems, J. Phys. Chem. B116 (2012) 52135225. PMid:22497348; 10.1021/jp300568kSearch in Google Scholar PubMed

28. Ul Haq, N., Usman, M., Mansha, A., Rashid, M. A., Munir, M. and Rana, U. A.: Solubilization of reactive blue 19 by the micelles of cationic surfactant Cetyltrimethyl ammonium bromide (CTAB), J. Mol. Liq.196 (2014) 264269. 10.1016/j.molliq.2014.03.038Search in Google Scholar

29. Kawamura, H., Manabe, M., Miyamoto, Y., Fujita, Y. and Tokunaga, S.: Partition coefficients of homologous. omega.-phenylalkanols between water and sodium dodecyl sulfate micelles, J. Phys. Chem. A.93 (1989) 55365540. 10.1021/j100351a042Search in Google Scholar

30. García-Río, L., Hervés, P., Mejuto, J. C., Parajó, M. and Perez-Juste, J.: Association Constant of Crystal Violet in Micellar Aggregates: Determination by Spectroscopic Techniques, Chem. Res. (S), 11 (1998) 716717. 10.1039/a803135eSearch in Google Scholar

31. Farías, T., De Menorval, L. C., Zajac, J. and Rivera, A.: Solubilization of drugs by cationic surfactants micelles: conductivity and 1H NMR experiments, Colloids Surf. A.345 (2009) 5157. 10.1016/j.colsurfa.2009.04.022Search in Google Scholar

32. Sathiyaraj, S., Sampath, K., Raja, G., Butcher, R. J., Gupta, S. K. and Jayabalakrishnan, C.: DNA binding/cleavage, antioxidant and cytotoxic activities of water soluble cobalt (II) and copper (II) antipyrine complexes, Inorg. Chimi. Acta.406 (2013) 4452. 10.1016/j.ica.2013.07.001Search in Google Scholar

33. Tan, A., Gagné, S., Lévesque, I. A., Lachance, S., Boudreau, N. and Lévesque, A.: Impact of hemolysis during sample collection: How different is drug concentration in hemolyzed plasma from that of normal plasma?, J. Chromatogr. B.901 (2012) 7984. PMid:22748717; 10.1016/j.jchromb.2012.06.002Search in Google Scholar PubMed

34. Ismail, D. A., Ahmed, S. M., Ahmed, H. M., Awad, A. I. and El-Sharkawy, H. A.: Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants. Tenside Surfact. Det.53(2010) 319323. 10.3139/113.110438Search in Google Scholar

35. Laranjeira, M. S., Moço, A., Ferreira, J., Coimbra, S., Costa, E., Santos-Silva, A., Ferreira, P. J. and Monteiro, F. J.: Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity, Colloids Surf. B.146 (2016) 363374. PMid:27388965; 10.1016/j.colsurfb.2016.06.042Search in Google Scholar PubMed

36. Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., Riyasdeen, A. and Akbarsha, M. A.: Mixed ligand copper (II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz) imidazolyl Schiff base ligands: Covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity, J. Inorg. Biochem.140 (2014) 255268. PMid:25199844; 10.1016/j.jinorgbio.2014.07.016Search in Google Scholar PubMed

Received: 2019-04-01
Accepted: 2019-07-04
Published Online: 2019-11-13
Published in Print: 2019-11-15

© 2019, Carl Hanser Publisher, Munich

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110653/html
Scroll to top button