Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
-
Lifei Zhi
Abstract
The equilibrium surface properties and dynamic surface tension (DST) are presented for aqueous solutions of novel eco-friendly cationic saccharide surfactants (CnDGPB) at different concentrations and temperatures. The equilibrium surface tension, the DST, the effective diffusion coefficients and the activation barrier of the surfactants are calculated and analyzed. In addition, the general diffusion mechanism of the surfactants is proposed. The equilibrium surface tension results show that the γCMC and CMC values decrease with increasing temperature. The interactions (repulsion forces) between the hydrophobic groups and water molecules decrease with increasing temperature, which results in increased HLB values. This phenomenon causes a higher Amin and lower Γmax. The DST of CnDGPB below and above the CMC is tested by the maximum bubble pressure method at temperature from 25 °C to 45 °C. The adsorption activation energy of CnDGPB is between 3 kJ/mol and 20 kJ/mol. The results show that the final stages of the DST decays are consistent with the activated diffusion-controlled adsorption mechanism.
Kurzfassung
Die Gleichgewichts-Oberflächeneigenschaften und die dynamische Oberflächenspannung (DST) werden für wässrige Lösungen neuartiger umweltfreundlicher kationischer Saccharidtenside (CnDGPB) bei verschiedenen Konzentrationen und Temperaturen dargestellt. Die Gleichgewichts-Oberflächenspannung, die DST, die effektiven Diffusionskoeffizienten und Aktivierungsbarrieren der Tenside werden berechnet und analysiert. Zusätzlich wird ein allgemeiner Diffusionsmechanismus der Tenside vorgeschlagen. Die Ergebnisse der Oberflächenspannung im Gleichgewicht zeigen, dass γCMC und die CMC mit zunehmender Temperatur abnehmen. Die Wechselwirkungen (Abstoßungskräfte) zwischen den hydrophoben Gruppen und den Wassermolekülen nehmen mit zunehmender Temperatur ab, was zu höheren HLB-Werten führt. Dieses Phänomen führt zu höherem Amin und niedrigerem Γmax. Die DST von CnDGPB unterhalb und oberhalb der CMC wird mit der maximalen Blasendruck-Methode bei Temperaturen von 25 °C bis 45 °C untersucht. Die Adsorptionsaktivierungsenergie von CnDGPB liegt zwischen 3 kJ/mol und 20 kJ/mol. Die Ergebnisse zeigen, dass die Endstufen der DST-Abnahme mit dem aktivierten diffusionskontrollierten Adsorptionsmechanismus übereinstimmen.
References
1. Tian, H. J., Feng, Q. Y., Chen, Y. J., Yang, H., Li, X. D. and Lu, P.: Synthesis of amino-functionalized mesoporous materials with environmentally friendly surfactants by evaporation-induced self-assembly and their application to the adsorption of lead (II) ions. Journal of Materials Science50 (2015) 2768–2778. 10.1007/s10853-015-8832-4Suche in Google Scholar
2. Singh, A., and Tyagi, V. K.: Arginine Based Novel Cationic Surfactants: A Review. Tenside Surfactants Detergents51 (2014) 202–214. 10.3139/113.110299Suche in Google Scholar
3. Lu, B., Miao, Y. and Vigneron, P.: Measurement of cytotoxicity and irritancy potential of sugar-based surfactants on skin-related 3D models. Toxicology in Vitro April40 (2017) 305–312. PMid:28163247; 10.1016/j.tiv.2017.02.002Suche in Google Scholar
4. Infante, M., Pinazo, A. and Seguer, J.: Non-conventional surfactants from amino acids and glycolipids: structure, preparation and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects123–124 (1997) 49–70. 10.1016/S0927-7757(96)03793-4Suche in Google Scholar
5. Holmberg, K. and Marcel, D.: Novel Surfactants, New York (1998) 32.Suche in Google Scholar
6. Ampatzidis, C. D., Varka, E. M. A. and Karapantsios, T. D.: Dynamic surface properties of eco-friendly phenylalanine glycerol ether surfactants at the W/A interface. Colloids and Surfaces A.441 (2014) 872–879. 10.1016/j.colsurfa.2012.12.020Suche in Google Scholar
7. Zhi, L. F., Li, Q. X., Li, Y. L. and Song, Y. B.: Adsorption and Aggregation Properties of Novel Star-shaped Gluconamide-type Cationic Surfactants in Aqueous Solution. Colloid and Polymer Science.292 (2014) 1041–1050. 10.1007/s00396-013-3147-ySuche in Google Scholar
8. Jurado, E., Fernandez-Serrano, M., and Nunez-Olea, M. L.: Effect of Concentration on the Primary and Ultimate Biodegradation of Alkylpolyglucosides in Aerobic Biodegradation Tests. Water Environment Research, 83 (2011) 154–161. PMid:21449477; 10.2175/106143010x12780288628336Suche in Google Scholar PubMed
9. Jurado, E., Fernández-Serrano, M., Núez Olea, J. et al.: Acute Toxicity of Alkylpolyglucosides to Vibrio fischeri, Daphnia magna and Microalgae: A Comparative Study. Bulletin of Environmental Contamination and Toxicology.88 (2011) 290–295. PMid:22127434; 10.1007/s00128-011-0479-5Suche in Google Scholar PubMed
10. Francisco, R., Alejandro, F-A., Manuela, L.: Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters. Environmental Science and Pollution Research, 23 (2016) 8286–8293. PMid:26820643; 10.1007/s11356-016-6129-zSuche in Google Scholar PubMed
11. Singh, P. and Cameotra, S. S.: Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol22 (2004) 142–146. PMid:15036865; 10.1016/j.tibtech.2004.01.010Suche in Google Scholar PubMed
12. Nabel, A. N. and Amouna, S. M.: Synthesis Characterization and biological activity of sugar-based gemini cationic amphiphiles. J. Surfact. Deterg.11 (2008) 215–221. 10.1007/s11743-008-1071-9Suche in Google Scholar
13. Quagliotto, P., Viscardi, G., Barolo, C. and D’Angelo, D.: Synthesis and properties of new glucocationic surfactants: model structures for marking cationic surfactants with carbohydrates. J. Org. Chem.70 (2005) 9857–9866. PMid:16292816; 10.1021/jo051579sSuche in Google Scholar PubMed
14. Schmidt-Wolf, G. D. and Schmidt-Wolf, I. G.: Non-viral and hybrid vectors in human gene therapy: an update. Trends. Mol. Med.9 (2003) 67–72. 10.1016/S1471-4914(03)00005-4Suche in Google Scholar
15. Misiak, P., Wilk, K. A. and Kral, T.: New gluconamide-type cationic surfactants: Interactions with DNA and lipid membranes. Biophysical Chemistry180–181 (2013) 44–54. PMid:23838623; 10.1016/j.bpc.2013.06.010Suche in Google Scholar
16. Pouton, C. W. and Seymour, L. W.: Key issues in non-viral gene delivery. Adv. Drug. Deliv. Rev.46 (2001) 187–203. 10.1016/S0169-409X(98)Suche in Google Scholar
17. Xu, F. J.: Versatile types of hydroxyl-rich polycationic systems via o-heterocyclic ring-opening reactions: from strategic design to nucleic acid delivery applications. Progress in Polymer Science78 (2017) 56–91. 10.1016/j.progpolymsci.2017.09.003Suche in Google Scholar
18. Wang, X., Yun, W. and Jiang, W.: An amphiphilic non-viral gene vector prepared by a combination of enzymatic atom transfer radical polymerization and enzymatic ring-opening polymerization. RSC. Adv.7 (2017) 9926–9932. 10.1039/C6RA28650JSuche in Google Scholar
19. Zhi, L. F., Li, Q. X., Li, Y. L. and Song, Y. B.: Synthesis, Adsorption and Aggregation Properties of New Cationic saccharide Surfactants. Colloids and Surfaces A.436 (2013) 684–692. 10.1016/j.colsurfa.2013.08.009Suche in Google Scholar
20. Bai, L. and Yang, X. Q.: Research progress on synthesis of alkanol amide. Detergent & Cosmetics04 (2009) 15–19.Suche in Google Scholar
21. Zhi, L. F., Li, Q. X., Sun, Y. Q. and Yao, S. S.: Mixed stability and antimicrobial properties of gluconamide-type cationic surfactants. Journal of Surfactants and Detergents19 (2016) 337–342. 10.1007/s11743-015-1773-8Suche in Google Scholar
22. Quagliotto, P., Viscardi, G., Barolo, C. and Angelo, D. D.: Synthesis and properties of new glucocationic surfactants: model structures for marking cationic surfactants with carbohydrates. J. Org. Chem.70 (2005) 9857–9866. PMid:16292816; 10.1021/jo051579sSuche in Google Scholar
23. Misiak, P., Wilk, K. A. and Kral, T.: New gluconamide-type cationic surfactants: Interactions with DNA and lipid membranes. Biophysical Chemistry44–45 (2013) 180–181. PMid:23838623; 10.1016/j.bpc.2013.06.010Suche in Google Scholar
24. Jiang, Y. J., Geng, T., Li, Q. X., Li, G. J. and Ju, H. B.: Equilibrium and dynamic surface tension properties of salt-free catanionic surfactants with different hydrocarbon chain lengths. Journal of Molecular Liquids204 (2015) 126–131. 10.1016/j.molliq.2015.01.026Suche in Google Scholar
25. Eastoe, J. and Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid. Interface. Sci.85 (2000) 103–144. 10.1016/S0001–8686(99)00017–2Suche in Google Scholar
26. Gao, Y. Y. and Yang, X. Q.: Equilibrium and dynamic surface properties of sulfosuccinate surfactants. J. Surfact. Deterg.17 (2014) 1117–1123. 10.1081/DIS-200054570Suche in Google Scholar
27. Yoshimura, T., Ishihara, K. and Esumi, K.: Sugar-Based Gemini Surfactants with Peptide BondsSynthesis, Adsorption, Micellization, and Biodegradability. Langmuir21 (2005) 10409–10415. PMid:16262300; 10.1021/la051614qSuche in Google Scholar PubMed
28. Vanda, V. L., Wen, C. T., Shi, Y. L. and Boris, A. N.: Dynamic surface properties of DNA/surfactant solutions: impact of DNA structure. Journal of the Taiwan Institute of Chemical Engineers68 (2016) 59–63. 10.1016/j.jtice.2016.09.016Suche in Google Scholar
29. Zhou, M., Zhang, Z., Xu, D. Y. and Hou, L. T.: Synthesis of three Gemini betaine surfactants and their surface active properties. Journal of the Taiwan Institute of Chemical Engineers74 (2017) 7–13. 10.1016/j.jtice.2016.10.012Suche in Google Scholar
30. Chang, H. C., Tsen, C. H. and Chang, C. H.: Studied the dynamic adsorption behavior of two catanionic surfactants. Colloid. Polym. Sci.285 (2006) 57–63. 10.1007/s00396-006-1534-3Suche in Google Scholar
31. Bykov, A. G., Lin, S. Y., Loglio, G., Miller, R. and Noskov, B. A.: Kinetics of Adsorption Layer Formation in Solutions of Polyacid/Surfactant Complexes. J. Phys. Chem. C.113 (2009) 5664–5671. 10.1021/jp810471ySuche in Google Scholar
32. Rosen, M. J., Cohen, A. W., Dahanayake, M. and Hua, X. Y.: Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem.86 (1982) 541–545. 10.1021/j100393a025Suche in Google Scholar
33. Nahringbauer, I.: Dynamic Surface Tension of Aqueous Polymer Solutions, I: Ethyl(hydroxyethyl)cellulose (BERMOCOLL cst-103). Journal of Colloid and Interface Science176 (1995) 318. 10.1006/jcis.1995.9961Suche in Google Scholar
34. Yuichiro, T., Naoyuki, I., Kazuyuki, T. and Kanjiro, T.: Synthesis and aqueous solution properties of novel anionic heterogemini surfactants containing a phosphate headgroup. Journal of Colloid and Interface Science338 (2009) 229–235. PMid:19586636; 10.1016/j.jcis.2009.06.016Suche in Google Scholar
35. Ward, A. F. H. and Tordai, L.: Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects. J. Chem. Phys.14 (1946) 453–461. 10.1002/recl.19520710605Suche in Google Scholar
36. Alami, E. and Holmberg, K.: Heterogemini Surfactants Based on Fatty Acid Synthesis and Interfacial Properties. J. Colloid. Interface. Sci.239 (2001) 230–240. PMid:11397070; 10.1006/jcis.2001.7502Suche in Google Scholar
37. Eastoe, J., Dalton, J. S. and Rogueda, P. G. A.: Evidence for activation-diffusion controlled dynamic surface tension with a nonionic surfactant. Langmuir14 (1998) 979–981. 10.1021/la971241wSuche in Google Scholar
38. Fainerman, V. B., Makievski, A. V. and Miller, R.: The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory. Colloids Surface A.87 (1994) 61–75. 10.1016/0927-7757(94)02747-1Suche in Google Scholar
39. Gang, L. B. and Guo, C. Z.: Advance on the study of dynamic surface tension and adsorption kinetics of surfactant solution. Progress in Chemistry17 (2005) 233–241. 1005-281X(2005)02-0350-09Suche in Google Scholar
40. Eastoe, J. and Dalton, J. S.: Dynamic surface tensions of nonionic surfactant solutions. Jouranl of colloid and interface science188 (1997) 423–430. 10.1006/jcis.1997.4778Suche in Google Scholar
41. Fainerman, V. B.: Kinetics of adsorption of ionic surfactants at the solution-air interface and the nature of the adsorption barrier. Colloids. Surface. A.57 (1991) 249–266. 10.1016/0166-6622(91)80159-LSuche in Google Scholar
42. He, Y. F., Yazhgur, P., Salonen, A. and Langevin, D.: Adsortion-desortion kinetics of surfactants at liquid surfaces. Advances in Colloid and Interface Science222 (2015) 377–384. PMid:25307125; 10.1016/j.cis.2014.09.002Suche in Google Scholar PubMed
43. Fainerman, V. B., Makievski, A. V. and Miller, R.: The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory. Colloids. Surf. A.87 (1994) 61–75. 10.1016/0927-7757(94)02747-1Suche in Google Scholar
44. Filippov, L. K.: Dynamic surface tension of aqueous surfactant solutions: 1. Diffusion-convective controlled adsorption. J. Colloid. Interface. Sci.163 (1994) 49–60. 10.1006/jcis.1994.1079Suche in Google Scholar
45. Filippov, L. K.: Dynamic surface tension of aqueous surfactant solutions: 2. Diffusion-convective controlled adsorption. J. Colloid. Interface. Sci.164 (1994) 471–482. 10.1006/jcis.1994.1190Suche in Google Scholar
46. Rosen, M., Mathias, J. H. and Davenport, L.: Aberrant Aggregation Behavior in Cationic Gemini Surfactants Investigated by Surface Tension, Interfacial Tension and Fluorescence Methods. Langmuir15 (1999) 7340–7346. 10.1021/la9904096Suche in Google Scholar
47. Song, Y. B., Li, Q. X. and Li, Y. L.: Self-aggregation and antimicrobial activity of alkylguanidium salts. Colloids and Surfaces A.393 (2012) 11–16. 10.1016/j.colsurfa.2011.10.015Suche in Google Scholar
48. Chen, W. Q., Wang, G. X. and Xu, G. Y.: Colloid and Interface Chemistry. Higher Education Press. Beijing China (2001) 10–12.Suche in Google Scholar
49. Zhao, G. X.: Principles of Surfactant Action. China Light Industry Press, Beijing, China, (2003) 271.Suche in Google Scholar
50. Li, Z.: Thermodynamic study on the formation of ordered molecular assemblies of alkyl aryl sulfonates. (Master's thesis) Northeast Petroleum University (2010).Suche in Google Scholar
51. Zhang, H. L., Zhang, K. and Kong, C. Q.: Microcalorimetric studies on the thermodynamic property of polyoxyethylene lauryl ether in alcohol non-aqueous system. Scientia sinica Chimica40 (2010) 1348–1354.Suche in Google Scholar
52. Julian, E., James, S. D. and Philippe, G. A.: Dynamic surface tensions of nonionic surfactant solutions. J. Colloid. Interface. Sci.188 (1997) 423–430. 10.1006/jcis.1997.4778Suche in Google Scholar
53. Chang, H. H., Wang, Y., Cui, Y. and Li, G. J.: Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl. Colloids and surfaces A.500 (2016) 230–238. 10.1016/j.colsurfa.2016.04.029Suche in Google Scholar
54. Johner, A. and Joanny, J. F.: Block copolymer adsorption in a selective solvent: a kinetic study. Macromolecules23 (1990) 5299–5302. 10.1021/ma00228a001Suche in Google Scholar
55. Grasiele, R. and Felippe, A. C.: Determination of the Stabilization Time of the Solution-Air Interface for Aggregates Formed by NaC in Mixtures with SDS and PEO. Investigated by Dynamic Surface Tension Measurements Soft3 (2014) 1–10. 10.4236/soft.2014.31001Suche in Google Scholar
56. Zhi, L. F., Li, Q. X., Li, Y. L. and Sun, Y. Q.: Self-aggregation and Antimicrobial Activity of Cationic saccharide Surfactants. Colloid. Sur. A. Phys. Eng. Asp.456 (2014) 231–237. 10.1016/j.colsurfa.2014.05.042Suche in Google Scholar
57. Webster, J. R. P.: Interfacial properties of a catanionic surfactant. Langmuir12 (1996) 2706–2711. 10.1021/la960123qSuche in Google Scholar
58. Liggieri, L., Ravera, F. and Passerone, A.: A diffusion-based approach to mixed adsorption kinetics. Colloid. Sur. A. Phys. Eng. Asp.114 (1996) 351–359. 10.1016/0927-7757(96)03650-3Suche in Google Scholar
59. Li, B. G. and Chen, Z. G.: Advance on the study of dynamic surface tension and adsorption kinetics of surfactant solution. Prog. Chem.17 (2005) 233–241. 1005–281X(2005)02–0350–09Suche in Google Scholar
60. Eastoe, J. and Dalton, J. S.: Dynamic Surface Tensions and Micelle Structures of Dichained Phosphatidylcholine Surfactant Solutions. Langmuir14 (1998) 5719–5724. 10.1021/la980053iSuche in Google Scholar
61. Chang, C. H. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models. Colloids. Surf. A.100 (1995) 1–45. 10.1016/0927-7757(94)03061-4Suche in Google Scholar
62. Eastoe, J., Dalton, J. S. and Rogueda, P. G. A.: Evidence for activation-diffusion controlled dynamic surface tension with a nonionic surfactant. Langmuir14 (1998) 979–981. 10.1021/la971241wSuche in Google Scholar
63. Cicciarelli, B. A., Elia, J. A. and Hatton, T. A.: Temperature Dependence of Aggregation and Dynamic Surface Tension in a Photoresponsive Surfactant System. Langmuir23 (2007) 8323–8330. PMid:17616218; 10.1021/la7008418Suche in Google Scholar PubMed
64. Zhou, T. H. and Zhao, J. X.: Adsorption kinetics of asymmetric Gemini surfactants at air/water interface. Acta. Phys. Chim. Sin.23 (2007) 1047–1052. 10.3866/PKU.WHXB20070716Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Dish Washing
- Potential of Near-Infrared Spectroscopy to Evaluate the Cleaning Performance of Dishwashing Processes
- Socio-demographic Differences in Washing-up Behaviour in Germany
- Physical Chemistry
- Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface
- Dependence of Surface Tension on Surface Concentration in Ionic Surfactant Solutions and Influences of Supporting Electrolyte Therein
- Solubilization and Thermodynamic Attributes of Nickel Phenanthroline Complex in Micellar Media of Sodium 2-Ethyl Hexyl Sulfate and Sodium Bis(2-ethyl hexyl) Sulfosuccinate
- Novel Surfactants
- Synthesis and Properties of Novel Catanionic Surfactant Phosphonium Benzene Sulfonate
- A Micellar-Enhanced Spectrofluorimetric Method for the Determination of Ciprofloxacin in Pure Form, Pharmaceutical Preparations and Biological Samples
- Micellar Catalysis
- A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals
- Application
- Application of Oxidative Fatty Acid Esters in Amino Acid Surfactants
- Environmental Chemistry
- Adsorptive Removal of Cetyltrimethyl Ammonium Bromide (CTAB) Surfactant from Aqueous Solution: Crossbreed Pilot Plant Membrane Studies