MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
-
Manuel Sánchez-Cantú
, Lydia Pérez-Díaz
, Efraín Rubio-Rosas , Victor Abril-Sandoval , Jorge Merino-Aguirre , Federico Reyes-Cruz und Laura Orea
Abstract
A series of MgZnAl hydrotalcite-like compounds with different zinc content (1–25 mass % of nominal zinc content) were prepared by a simple and environmentally-friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG), nitrogen adsorption-desorption at −196°C (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and CO2 temperature-programmed desorption (CO2-TPD). Transesterification of castor oil with methanol was selected as a probe reaction to stress the effect of zinc incorporation. From the XRD analysis of fresh samples it was demonstrated that the incorporation of zinc is feasible in the nominal range of 1–10 mass % while in the samples with higher zinc content, zinc nitrate and ZnO as secondary crystalline phases were observed. Furthermore, the analysis of samples calcined at 450°C indicated the coexistence of the ZnO and MgO crystalline phases. From the EDS and TG characterizations, the zinc percentage and thermal decomposition of the samples were determined. It was revealed that the samples exhibited the characteristic platy-like habit of hydrotalcite-like compounds. The BET analysis confirmed that the calcined samples presented an increment in their specific surface area values compared with the pristine ones. It was established that the amount of basic sites diminished with the zinc incorporation, which also affected the conversion degree of the transesterification reaction.
[1] Álvarez, M. G., Chimentáo, R. J., Figueras, F., & Medina, F. (2012). Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol. Applied Clay Science, 58, 16–24. DOI: 10.1016/j.clay.2012.02.004. http://dx.doi.org/10.1016/j.clay.2012.02.00410.1016/j.clay.2012.02.004Suche in Google Scholar
[2] Babu, N. S., Sree, R., Prasad, P. S. S., & Lingaiah, N. (2008). Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 22, 1965–1971. DOI: 10.1021/ef700687w. http://dx.doi.org/10.1021/ef700687w10.1021/ef700687wSuche in Google Scholar
[3] Bezen, M. C. I., Breitkopf, C., & Lercher, J. A. (2011). On the acid-base properties of Zn-Mg-Al mixed oxides. Applied Catalysis A: General, 399, 93–99. DOI: 10.1016/j.apcata.2011.03.053. http://dx.doi.org/10.1016/j.apcata.2011.03.05310.1016/j.apcata.2011.03.053Suche in Google Scholar
[4] Brindley, G.W., & Kikkawa, S. (1979). A crystal-chemical study of Mg,Al and Ni,Al hydroxyl-perchlorates and hydroxylcarbonates. American Mineralogist, 64, 836–843. Suche in Google Scholar
[5] Cantú, M., López-Salinas, E., Valente, J. S., & Montiel, R. (2005). SOx removal by calcined MgAlFe hydrotalcite-like materials: Effect of the chemical composition and the cerium incorporation method. Environmental Science and Technology, 39, 9715–9720. DOI: 10.1021/es051305m. http://dx.doi.org/10.1021/es051305m10.1021/es051305mSuche in Google Scholar
[6] Carja, G., Nakamura, R., Aida, T., & Niiyama, H. (2001). Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous and Mesoporous Materials, 47, 275–284. DOI: 10.1016/s1387-1811(01)00387-0. http://dx.doi.org/10.1016/S1387-1811(01)00387-010.1016/S1387-1811(01)00387-0Suche in Google Scholar
[7] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-k. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSuche in Google Scholar
[8] Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., & Dziembaj, R. (2002). Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta, 395, 225–236. DOI: 10.1016/s0040-6031(02)00214-9. http://dx.doi.org/10.1016/S0040-6031(02)00214-910.1016/S0040-6031(02)00214-9Suche in Google Scholar
[9] Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G. G., & Elisei, F. (1999). Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained. Langmuir, 15, 4454–4460. DOI: 10.1021/la981672u. http://dx.doi.org/10.1021/la981672u10.1021/la981672uSuche in Google Scholar
[10] Di Serio, M., Ledda, M., Cozzolino M., Minutillo, G., Tesser, R., & Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial & Engineering Chemistry Research, 45, 3009–3014. DOI: 10.1021/ie051402o. http://dx.doi.org/10.1021/ie051402o10.1021/ie051402oSuche in Google Scholar
[11] Dudek, B., Kuśtrowski, P., Białas, A., Natkański, P., Piwowarska, Z., Chmielarz, L., Kozak, M., & Michalik, M. (2012). Influence of textural and structural properties of Mg-Al and Mg-Zn-Al containing hydrotalcite derived oxides on Cr(VI) adsorption capacity. Materials Chemistry and Physics, 132, 929–936 DOI: 10.1016/j.matchemphys.2011.12.037. http://dx.doi.org/10.1016/j.matchemphys.2011.12.03710.1016/j.matchemphys.2011.12.037Suche in Google Scholar
[12] Gastuche, M. C., Brown, G., & Mortland, M. M. (1967). Mixed magnesium-aluminium hydroxides: I. Preparation and characterization of compounds formed in dialysed systems. Clay Minerals, 7, 177–192. http://dx.doi.org/10.1180/claymin.1967.007.2.0510.1180/claymin.1967.007.2.05Suche in Google Scholar
[13] Hattori, H. (1995). Heterogeneous basic catalysis. Chemical Reviews, 95, 537–558. DOI: 10.1021/cr00035a005. http://dx.doi.org/10.1021/cr00035a00510.1021/cr00035a005Suche in Google Scholar
[14] Kasprzyk-Hordern, B. (2004). Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Advances in Colloid and Interface Science, 110, 19–48. DOI: 10.1016/j.cis.2004.02.002. http://dx.doi.org/10.1016/j.cis.2004.02.00210.1016/j.cis.2004.02.002Suche in Google Scholar PubMed
[15] Kloprogge, J. T., Hickey, L., & Frost, R. L. (2004). The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. Journal of Solid State Chemistry, 177, 4047–4057. DOI: 10.1016/j.jssc.2004.07.010. http://dx.doi.org/10.1016/j.jssc.2004.07.01010.1016/j.jssc.2004.07.010Suche in Google Scholar
[16] Knothe, G. (2000). Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists’ Society, 77, 489–493. DOI: 10.1007/s11746-000-0078-5. http://dx.doi.org/10.1007/s11746-000-0078-510.1007/s11746-000-0078-5Suche in Google Scholar
[17] Kooli, F., Kosuge, K., & Tsunashima, A. (1995). Mg-Zn-Al-CO3 and Mg-Cu-Al-CO3 hydrotalcite-like compounds: Preparation and characterization. Journal of Materials Science, 30, 4591–4597. DOI: 10.1007/bf01153066. http://dx.doi.org/10.1007/BF0115306610.1007/BF01153066Suche in Google Scholar
[18] Kunde L. B., Gade S. M., Kalyani V. S., & Gupte, S. P. (2009). Catalytic synthesis of chalcone and flavanone using Zn-Al hydrotalcite adhere ionic liquid. Catalysis Communications, 10, 1881–1888. DOI: 10.1016/j.catcom.2009.06.018. http://dx.doi.org/10.1016/j.catcom.2009.06.01810.1016/j.catcom.2009.06.018Suche in Google Scholar
[19] Ludvíková, J., Jirátová, K., & Kovanda, F. (2012). Mixed oxides of transition metals as catalysts for total ethanol oxidation. Chemical Papers, 66, 589–597. DOI: 10.2478/s11696-011-0127-x. http://dx.doi.org/10.2478/s11696-011-0127-x10.2478/s11696-011-0127-xSuche in Google Scholar
[20] Miyata, S. (1975). The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO 3−, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO 4−, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl−. Clays and Clay Minerals, 23, 369–375. DOI: 10.1346/ccmn.1975.0230508. http://dx.doi.org/10.1346/CCMN.1975.023050810.1346/CCMN.1975.0230508Suche in Google Scholar
[21] Miyata, S. (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 50–56. DOI: 10.1346/ccmn.1980.0280107. http://dx.doi.org/10.1346/CCMN.1980.028010710.1346/CCMN.1980.0280107Suche in Google Scholar
[22] Miyata, S. (1983). Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311. DOI: 10.1346/ccmn.1983.0310409. http://dx.doi.org/10.1346/CCMN.1983.031040910.1346/CCMN.1983.0310409Suche in Google Scholar
[23] Padmasri, A. H., Venugopal, A., Kumari, V. D., Rao, K. S. R., & Rao, P. K. (2002). Calcined Mg-Al, Mg-Cr and Zn-Al hydrotalcite catalysts for tert-butylation of phenol with iso-butanol-a comparative study. Journal of Molecular Catalysis A: Chemical, 188, 255–265. DOI: 10.1016/s1381-1169(02)00356-4. http://dx.doi.org/10.1016/S1381-1169(02)00356-410.1016/S1381-1169(02)00356-4Suche in Google Scholar
[24] Radha, A. V., Kamath, P. V., & Shivakumara, C. (2007). Conservation of order, disorder, and “crystallinity” during anionexchange reactions among layered double hydroxides (LDHs) of Zn with Al. The Journal of Physical Chemistry B, 111, 3411–3418. DOI: 10.1021/jp0684170. http://dx.doi.org/10.1021/jp068417010.1021/jp0684170Suche in Google Scholar
[25] Reichle, W. T., Kang, S. Y., & Everhardt, D. S. (1986). The nature of the thermal decomposition of a catalytically active anionic clay mineral. Journal of Catalysis, 101, 352–359. DOI: 10.1016/0021-9517(86)90262-9. http://dx.doi.org/10.1016/0021-9517(86)90262-910.1016/0021-9517(86)90262-9Suche in Google Scholar
[26] Sanchez-Cantu, M., Perez-Diaz, L. M., Maubert, A. M., & Valente, J. S. (2010). Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction. Catalysis Today, 150, 332–339. DOI: 10.1016/j.cattod.2009.09.010. http://dx.doi.org/10.1016/j.cattod.2009.09.01010.1016/j.cattod.2009.09.010Suche in Google Scholar
[27] Sánchez-Cantú, M., Pérez-Díaz, L. M., Tepale-Ochoa, N., González-Coronel, V. J., Ramos-Cassellis, M. E., Machorro-Aguirre, D., & Valente, J. S. (2013). Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. Fuel, 110, 23–31. DOI: 10.1016/j.fuel.2012.06.078. http://dx.doi.org/10.1016/j.fuel.2012.06.07810.1016/j.fuel.2012.06.078Suche in Google Scholar
[28] Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcitelike anionic clays in catalytic organic reactions. Catalysis Reviews, 43, 443–488. DOI: 10.1081/cr-120001809. http://dx.doi.org/10.1081/CR-12000180910.1081/CR-120001809Suche in Google Scholar
[29] Stamires, D., & O’Connor, P. (2003). U.S. Patent No. 6,589,902. Washington, DC: U.S. Patent and Trademark Office. Suche in Google Scholar
[30] Tzompantzi, F., Valente, J. S., Cantú, M. S., & Gómez, R. (2007). Gas-phase acetone condensation over hydrotalcitelike catalysts. In S. R. Schmidt (Ed.), Catalysis of organic reactions (pp. 55–59). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar
[31] Valente, J. S., Figueras, F., Gravelle, M., Kumbhar, P., Lopez, J., & Besse, J. P. (2000). Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. Journal of Catalysis, 189, 370–381. DOI: 10.1006/jcat.1999.2706. http://dx.doi.org/10.1006/jcat.1999.270610.1006/jcat.1999.2706Suche in Google Scholar
[32] Valente, J. S., Cantú, M. S., Cortez, J. G. H., Montiel, R., Bokhimi, X., & López-Salinas, E. (2007). Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology. The Journal of Physical Chemistry C, 111, 642–651. DOI: 10.1021/jp065283h. http://dx.doi.org/10.1021/jp065283h10.1021/jp065283hSuche in Google Scholar
[33] Valente, J. S., Cantu, M. S., & Figueras, F. (2008). A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds. Chemistry of Materials, 20, 1230–1232. DOI: 10.1021/cm7031306. http://dx.doi.org/10.1021/cm703130610.1021/cm7031306Suche in Google Scholar
[34] Valente, J. S., Sánchez-Cantú, M., Lima, E., & Figueras, F. (2009a). Method for large-scale production of multimetallic layered double hydroxides: Formation mechanism discernment. Chemistry of Materials, 21, 5809–5818. DOI: 10.1021/cm902377p. http://dx.doi.org/10.1021/cm902377p10.1021/cm902377pSuche in Google Scholar
[35] Valente, J. S., Tzompantzi, F., Prince, J., Cortez, J. G. H., & Gomez, R. (2009b). Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides. Applied Catalysis B: Environmental, 90, 330–338. DOI: 10.1016/j.apcatb.2009.03.019. http://dx.doi.org/10.1016/j.apcatb.2009.03.01910.1016/j.apcatb.2009.03.019Suche in Google Scholar
[36] Valente, J. S., Prince, J., Maubert, A. M., Lartundo-Rojas, L., del Angel, P., Ferrat, G., Hernandez, J. G., & Lopez-Salinas, E. (2009c). Physicochemical study of nanocapsular layered double hydroxides evolution. The Journal of Physical Chemistry C, 113, 5547–5555. DOI: 10.1021/jp810293y. http://dx.doi.org/10.1021/jp810293y10.1021/jp810293ySuche in Google Scholar
[37] Valente, J. S., Hernandez-Cortez, J., Cantu, M. S., Ferrat, G., & López-Salinas, E. (2010). Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catalysis Today, 150, 340–345. DOI: 10.1016/j.cattod.2009.08.020. http://dx.doi.org/10.1016/j.cattod.2009.08.02010.1016/j.cattod.2009.08.020Suche in Google Scholar
[38] Wan, D. J., Liu, H. J., Liu, R. P., Qu, J. H., Li, S. S., & Zhang, J. (2012). Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 195–196, 241–247. DOI: 10.1016/j.cej.2012.04.088. http://dx.doi.org/10.1016/j.cej.2012.04.08810.1016/j.cej.2012.04.088Suche in Google Scholar
[39] Xie, W. L., Peng, H., & Chen, L. G. (2006). Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246, 24–32. DOI: 10.1016/j.molcata.2005.10.008. http://dx.doi.org/10.1016/j.molcata.2005.10.00810.1016/j.molcata.2005.10.008Suche in Google Scholar
[40] Xu, Z. P., & Zeng, H. C. (2001). Abrupt structural transformation in hydrotalcite-like compounds Mg1−x Alx(OH)2(NO3)x · nH2O as a continuous function of nitrate anions. The Journal of Physical Chemistry B, 105, 1743–1749. DOI: 10.1021/jp0029257. http://dx.doi.org/10.1021/jp002925710.1021/jp0029257Suche in Google Scholar
[41] Yun, S. K., & Pinnavaia, T. J. (1995). Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials, 7, 348–354. DOI: 10.1021/cm00050a017. http://dx.doi.org/10.1021/cm00050a01710.1021/cm00050a017Suche in Google Scholar
[42] Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides-multifunctional nanomaterials. Chemical Papers, 66, 1–10. DOI: 10.2478/s11696-011-0100-8. http://dx.doi.org/10.2478/s11696-011-0100-810.2478/s11696-011-0100-8Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A spectrophotometric method for plant pigments determination and herbs classification
- Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
- Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
- Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
- Effect of the preparation route on the structure and microstructure of LaCoO3
- Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
- Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
- Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
- MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
- Carbon nanotube-layered double hydroxide nanocomposites
- Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
- Reduction of nitroblue tetrazolium to formazan by folic acid
- Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
- Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
- Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
- QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
- Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
- “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Artikel in diesem Heft
- A spectrophotometric method for plant pigments determination and herbs classification
- Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
- Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
- Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
- Effect of the preparation route on the structure and microstructure of LaCoO3
- Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
- Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
- Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
- MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
- Carbon nanotube-layered double hydroxide nanocomposites
- Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
- Reduction of nitroblue tetrazolium to formazan by folic acid
- Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
- Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
- Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
- QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
- Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
- “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity