Home Effect of the preparation route on the structure and microstructure of LaCoO3
Article
Licensed
Unlicensed Requires Authentication

Effect of the preparation route on the structure and microstructure of LaCoO3

  • Refka Andoulsi EMAIL logo , Karima Horchani-Naifer and Mokhtar Férid
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

Lanthanum cobaltite oxide, LaCoO3, was prepared by the evaporation technique and the amorphous metal complex method. Powders were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and surface area measurements. The effect of the synthesis route on the phase purity, particle size, surface area, and morphology of the powders was studied. A single perovskite phase was synthesized at 700°C using the amorphous metal complex route. However, the evaporation technique required higher temperature for LaCoO3 crystallization. Based on the characterization results, low temperature formation of LaCoO3 was attributed to the homogeneity of the precursors. Such behavior also results in different microstructures. Powder synthesized by the amorphous metal complex method exhibited the highest surface area and the lowest particle size.

[1] Andoulsi, R., Horchani-Naifer, K., & Férid, M. (2012a). Preparation of lanthanum ferrite powder at low temperature. Cerâmica, 58, 126–130. DOI: 10.1590/s0366-6913201200010 0020. http://dx.doi.org/10.1590/S0366-6913201200010002010.1590/S0366-69132012000100020Search in Google Scholar

[2] Andoulsi, R., Horchani-Naifer, K., & Férid, M. (2012b). Structural and electrical properties of calcium substituted lanthanum ferrite powders. Powder Technology, 230, 183–187. DOI: 10.1016/j.powtec.2012.07.026. http://dx.doi.org/10.1016/j.powtec.2012.07.02610.1016/j.powtec.2012.07.026Search in Google Scholar

[3] Andoulsi, R., Horchani-Naifer, K., & Férid, M. (2013). Electrical conductivity of La1−x CaxFeO3−δ solid solutions. Ceramics International, 39, 6527–6531. DOI: 10.1016/j.ceramint.2013.01.085. http://dx.doi.org/10.1016/j.ceramint.2013.01.08510.1016/j.ceramint.2013.01.085Search in Google Scholar

[4] Cheng, C. S., Zhang, L., Zhang, Y. J., & Jiang, S. P. (2008). Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells. Solid State Ionics, 179, 282–289. DOI: 10.1016/j.ssi.2008.01.080. http://dx.doi.org/10.1016/j.ssi.2008.01.08010.1016/j.ssi.2008.01.080Search in Google Scholar

[5] Cullity, B. D. (1978). Elements of X-ray diffraction. Reading, MA, USA: Addison-Wesley. Search in Google Scholar

[6] Davydov, A. A. (1990). Infrared spectroscopy of adsorbed species on the surface of transition metal oxides. Chichester, UK: Wiley. Search in Google Scholar

[7] Dole, S. L., Scheidecker, R. W., Shiers, L. E., Berard, M. F., & Hunter, O., Jr. (1978). Technique for preparing highly sinterable oxide powders. Materials Science & Engineering A, 32, 277–281. http://dx.doi.org/10.1016/0025-5416(78)90141-610.1016/0025-5416(78)90141-6Search in Google Scholar

[8] Ito, T., Zhang, Q. W., & Saito, F. (2004). Synthesis of Perovskite-type lanthanum cobalt oxide nanoparticles by means of mechanochemical treatment. Powder Technology, 143–144, 170–173. DOI: 10.1016/j.powtec.2004.04.010. http://dx.doi.org/10.1016/j.powtec.2004.04.01010.1016/j.powtec.2004.04.010Search in Google Scholar

[9] Johnson, D. W., Jr., & Gallagher, P. K. (1978). Reactive powders from solution. In G. Y. Onoda, & L. L. Hench (Eds.), Ceramic processing before firing. Hoboken, NJ, USA: Wiley. Search in Google Scholar

[10] Kumar, M., Srikanth, S., Ravikumar, B., Alex, T. C., & Das, S. K. (2009). Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr,Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Materials Chemistry and Physics, 113, 803–815. DOI: 10.1016/j.matchemphys.2008.08.047. http://dx.doi.org/10.1016/j.matchemphys.2008.08.04710.1016/j.matchemphys.2008.08.047Search in Google Scholar

[11] Li, X., Zhang, H. B., Li, S. J., Fan, W., & Zhao, M. Y. (1995). IR transmission spectra of nanocrystalline powder materials of the composite oxides La1−x SrxFe1−y CoyO3 with the perovskite structure. Materials Chemistry and Physics, 41, 41–45. DOI: 10.1016/0254-0584(95)01502-7. http://dx.doi.org/10.1016/0254-0584(95)01502-710.1016/0254-0584(95)01502-7Search in Google Scholar

[12] Lubinskii, N. N., Bashkirov, L. A., Petrov, G. S., Shevchenko, S. V., Kandidatova, I. N., & Bunshinskii, M. V. (2009). Crystal structure and IR spectra of lanthanum cobaltites-gallates. Glass and Ceramics, 66, 59–62. DOI: 10.1007/s10717-009-9124-8. http://dx.doi.org/10.1007/s10717-009-9124-810.1007/s10717-009-9124-8Search in Google Scholar

[13] Lufaso, M. W., & Woodward, P. M. (2001). Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B, 57, 725–738. DOI: 10.1107/s0108768101015282. http://dx.doi.org/10.1107/S010876810101528210.1107/S0108768101015282Search in Google Scholar PubMed

[14] Muthuraman, M., & Patil, K. C. (1998). Synthesis, properties, sintering and microstructure of sphene, CaTiSiO5: a comparative study of coprecipitation, sol-gel and combustion process. Materials Research Bulletin, 33, 655–661. DOI: 10.1016/s0025-5408(98)00005-1. http://dx.doi.org/10.1016/S0025-5408(98)00005-110.1016/S0025-5408(98)00005-1Search in Google Scholar

[15] Merino, N. A., Barbero, B. P., Grange, P., & Cadús, L. E. (2005). La1−x CaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. Journal of Catalysis, 231, 232–244. DOI: 10.1016/j.jcat.2005.01.003. http://dx.doi.org/10.1016/j.jcat.2005.01.00310.1016/j.jcat.2005.01.003Search in Google Scholar

[16] Panneerselvam, M., & Rao, K. J. (2003). Microwave preparation and sintering of industrially important perovskite oxides: LaMO3 (M = Cr, Co, Ni). Journal of Materials Chemistry, 13, 596–601. DOI: 10.1039/b211602b. http://dx.doi.org/10.1039/b211602b10.1039/b211602bSearch in Google Scholar

[17] Petrović, S., Terlecki-Baričević, A., Karanović, Lj., Kirilov-Stefanov, P., Zdujić, M., Dondur, V., Paneva, D., Mitov, I., & Rakić, V. (2008). LaMO3 (M: Mg, Ti, Fe) perovskite type oxides: Preparation, characterization and catalytic properties in methane deep oxidation. Applied Catalysis B: Environmental, 79, 186–198. DOI: 10.1016/j.apcatb.2007.10.022. http://dx.doi.org/10.1016/j.apcatb.2007.10.02210.1016/j.apcatb.2007.10.022Search in Google Scholar

[18] Predoana, L., Malic, B., Kosec, M., Scurtu, M., Caldararu, M., & Zaharescu, M. (2009). Phase formation and electrical properties of the LaCoO3 obtained by water-based sol-gel method with citric acid. Processing and Application of Ceramics, 3, 39–42. http://dx.doi.org/10.2298/PAC0902039P10.2298/PAC0902039PSearch in Google Scholar

[19] Spinicci, R., Faticanti, M., Marini, P., De Rossi, S., & Porta, P. (2003). Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. Journal of Molecular Catalysis A: Chemical, 197, 147–155. DOI: 10.1016/s1381-1169(02)00621-0. http://dx.doi.org/10.1016/S1381-1169(02)00621-010.1016/S1381-1169(02)00621-0Search in Google Scholar

[20] Sundar Manoharan, S., & Patil, K.C. (1993). Combustion route to fine particle perovskite oxides. Journal of Solid State Chemistry, 102, 267–276. DOI: 10.1006/jssc.1993.1031. http://dx.doi.org/10.1006/jssc.1993.103110.1006/jssc.1993.1031Search in Google Scholar

[21] Tsai, M. T. (2002). Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure. Journal of the European Ceramic Society, 22, 1073–1083. DOI: 10.1016/s0955-2219(01)00417-4. http://dx.doi.org/10.1016/S0955-2219(01)00417-410.1016/S0955-2219(01)00417-4Search in Google Scholar

[22] Wei, Z. X., Xu, Y. Q., Liu, H. Y., & Hu, C. W. (2009). Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition. Journal of Hazardous Materials, 165, 1056–1061. DOI: 10.1016/j.jhazmat.2008.10.086. http://dx.doi.org/10.1016/j.jhazmat.2008.10.08610.1016/j.jhazmat.2008.10.086Search in Google Scholar PubMed

[23] Zhang, J. R., & Gao, L. (2003). Synthesis of SnO2 nanoparticles by the sol-gel method from granulated tin. Chemistry Letters, 32, 458–459. DOI: 10.1246/cl.2003.458. http://dx.doi.org/10.1246/cl.2003.45810.1246/cl.2003.458Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0490-x/html
Scroll to top button