Home Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
Article
Licensed
Unlicensed Requires Authentication

Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex

  • Qadeer Panhwar EMAIL logo and Shahabuddin Memon
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

The article describes the synthesis and characterisation of the Cr(III)-rutin complex along with an estimate of its antioxidant activity. The complex was characterised using elemental analysis, UV-VIS, IR, conductance data, thermal, and gravimetric analyses. In the UV-VIS study, a bathochromic shift of approximately 98 nm indicates the formation of a rutin complex by more than one chelating site. The FT-IR spectra clearly show the formation of the Cr—O bond between rutin and Cr(III) at 494 cm−1, while the thermal study shows the presence of eight coordinated water molecules in the complex. The gravimetric analysis quantitatively proves the presence of four chloride ions. From these data, the formula of the Cr(III)-rutin complex was deduced as [Cr2(C27H28O16)(H2O)8]Cl4. Moreover, the antioxidant study of the complex was evaluated by using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) free-radical, ferric-reducing, and phosphomolybdenum assays, which show that the complex has a higher antioxidant activity than rutin.

[1] Abbasi, M. A., Zafar, A., Riaz, T., Rehman, A., Arshad, S., Shahwar, D., Jahangir, M., Siddiqui, S. Z., Shahzadi, T., & Ajaib, M. (2010). Evaluation of comparative antioxidant potential of aqueous and organic fractions of Ipomoea carnea. Journal of Medicinal Plants Research, 4, 1883–1887. DOI: 10.5897/jmpr10.287. Search in Google Scholar

[2] Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymerenhanced ultrafiltration. Journal of Hazardous Material, 147, 752–758. DOI: 10.1016/j.jhazmat.2007.01.120. http://dx.doi.org/10.1016/j.jhazmat.2007.01.12010.1016/j.jhazmat.2007.01.120Search in Google Scholar PubMed

[3] Balasuriya, B. W. N., & Rupasinghe, H. P. V. (2011). Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health and Disease, 5, 172–188. 10.31989/ffhd.v1i5.132Search in Google Scholar

[4] Buer, C. S., Imin, N., & Djordjevic, M. A. (2010). Flavonoids: New roles for old molecules. Journal of Integrative Plant Biology, 52, 98–111. DOI: 10.1111/j.1744-7909.2010.00905.x. http://dx.doi.org/10.1111/j.1744-7909.2010.00905.x10.1111/j.1744-7909.2010.00905.xSearch in Google Scholar PubMed

[5] Choudhary, A., Sharma, R., Nagar, M., Mohsin, M., & Meena, H. S. (2011). Synthesis, characterization and antioxidant activity of some transition metal complexes with terpenoid derivatives. Journal of the Chilean Chemical Society, 56, 911–917. DOI: 10.4067/s0717-97072011000400019. http://dx.doi.org/10.4067/S0717-9707201100040001910.4067/S0717-97072011000400019Search in Google Scholar

[6] de Mello, V. J., da Maia, J. R. S., de Oliveira, T. T., Nagern, T. J., Ardisson, J. D., & de Lima, G. M. (2004). Tin(IV) compounds derivatives of reaction between organotin(IV), SNCl4 and rutin trihydrate: Characterization and hypolipidemic effects. Main Group Metal Chemistry, 27, 309–321. DOI: 10.1515/mgmc.2004.27.6.309. http://dx.doi.org/10.1515/MGMC.2004.27.6.30910.1515/MGMC.2004.27.6.309Search in Google Scholar

[7] de Souza, R. F. V., Sussuchi, E. M., & de Giovani, W. F. (2003). Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33, 1125–1144. DOI: 10.1081/sim-120023482. http://dx.doi.org/10.1081/SIM-12002348210.1081/SIM-120023482Search in Google Scholar

[8] de Souza, R. F. V., & de Giovani, W. F. (2005). Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1985–1990. DOI: 10.1016/j.saa.2004.07.029. http://dx.doi.org/10.1016/j.saa.2004.07.02910.1016/j.saa.2004.07.029Search in Google Scholar PubMed

[9] Dehghan, G., & Khoshkam, Z. (2012). Tin(II)-quercetin complex: Synthesis, spectral characterization and antioxidant activity. Food Chemistry, 131, 422–426. DOI: 10.1016/j.foodchem.2011.08.074. http://dx.doi.org/10.1016/j.foodchem.2011.08.07410.1016/j.foodchem.2011.08.074Search in Google Scholar

[10] Dubey, R. K., Dubey, U. K., & Mishra, C. M. (2008). Synthesis and physicochemical characterization of some Schiff base complexes of chromium(III). Indian Journal of Chemistry, 47A, 1208–1212. Search in Google Scholar

[11] Eastmond, D. A., MacGregor, J. T., & Slesinski, R. S. (2008). Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology, 38, 173–190. DOI: 10.1080/10408440701845401. http://dx.doi.org/10.1080/1040844070184540110.1080/10408440701845401Search in Google Scholar PubMed

[12] Ebrahimzadeh, M. A., Nabavi, S. M., Nabavi, S., Eslami, B., & Rahmani, Z. (2010a). Antioxidant and antihaemolytic activities of the leaves of Kefe cumin (Laser trilobum L) umbelliferae. Tropical Journal of Pharmaceutical Research, 9, 441–449. DOI: 10.4314/tjpr.v9i5.61053. 10.4314/tjpr.v9i5.61053Search in Google Scholar

[13] Ebrahimzadeh, M. A., Nabavi, S. M., Nabavi, S. F., Bahramian, F., & Bekhradnia, A. R. (2010b). Antioxidant and free radical scavenging activity of H. Officinalis L. Var. Angustifolius, V. Odorata, B. Hyrcana and C. Speciosum. Pakistan Journal of Pharmaceutical Sciences, 23, 29–34. Search in Google Scholar

[14] Es-Safi, N. E., Ghidouche, S., & Ducrot, P. H. (2007). Flavonoids: Hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, 2228–2258. DOI: 10.3390/12092228. http://dx.doi.org/10.3390/1209222810.3390/12092228Search in Google Scholar PubMed PubMed Central

[15] Fathiazad, F., Delazar, A., Amiri, R., & Sarker, S. D. (2006). Extraction of flavonoids and quantification of rutin from waste tobacco leaves. Iranian Journal of Pharmaceutical Research, 3, 222–227. Search in Google Scholar

[16] Filipiak-Szok, A., Kurzawa, M., & Szłyk, E. (2012). Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry. Chemical Papers, 66, 259–268. DOI: 10.2478/s11696-012-0151-5. http://dx.doi.org/10.2478/s11696-012-0151-510.2478/s11696-012-0151-5Search in Google Scholar

[17] Gülçin, İ., Topal, F., Öztürk Sarıkaya, S. B., Bursal, E., Bilsel, G., & Gören, A. C. (2011). Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Records of Natural Products, 5, 158–175 Search in Google Scholar

[18] Huang, D. J., Ou, B. X., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856. DOI: 10.1021/jf030723c. http://dx.doi.org/10.1021/jf030723c10.1021/jf030723cSearch in Google Scholar PubMed

[19] Katz, S. A., & Salem, H. (1993). The toxicology of chromium with respect to its chemical speciation: A review. Journal of Applied Toxicology, 13, 217–224. DOI: 10.1002/jat.2550130 314. http://dx.doi.org/10.1002/jat.2550130314Search in Google Scholar

[20] Khade, B. C., Deore, P. M., & Arbad, B. R. (2011). Composition and stability of chromium metal complexes with drug salbutamol and amino acids. Pharma Science Monitor, 2, 73–86. Search in Google Scholar

[21] Koksal, E., Bursal, E., Dikici, E., Tozoglu, F., & Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves. Journal of Medicinal Plants Research, 5, 217–222. Search in Google Scholar

[22] Krejpcio, Z. (2001). Essentiality of chromium for human nutrition and health. Polish Journal of Environmental Studies, 10, 399–404. Search in Google Scholar

[23] Kuntić, V. S., Malešev, D. L., Radović, Z. V., & Kosanić, M. M. (1998). Spectrophotometric investigation of uranil(II)-rutin complex in 70 ethanol. Journal of Agricultural and Food Chemistry, 46, 5139–5142. DOI: 10.1021/jf980376k. http://dx.doi.org/10.1021/jf980376k10.1021/jf980376kSearch in Google Scholar

[24] Kuntić, V., Malešev, D., Radović, Z., & Vukojević, V. (2000). Spectrophotometric investigation of the complexing reaction between rutin and titanyloxalate anion in 50% ethanol. Monatshefte für Chemie/Chemical Monthly, 131, 769–777. DOI: 10.1007/s007060050024. http://dx.doi.org/10.1007/s00706005002410.1007/s007060050024Search in Google Scholar

[25] Lee, J. D. (1996). Concise inorganic chemistry (5th ed.). New Delhi, India: Blackwell Science. Search in Google Scholar

[26] Li, X. C., & Chen, C. (2012). Systematic evaluation on antioxidant of magnolol in vitro. International Research Journal of Pure and Applied Chemistry, 2, 68–76. 10.9734/IRJPAC/2012/628Search in Google Scholar

[27] Limaye, A. S., Deore, G. B., Shinde, B. M., & Laware, S. L. (2010). Assessment of Adiantum trapeziforme L. for antioxidant activities. Asian Journal of Experimental Biological Sciences, 1, 79–84. Search in Google Scholar

[28] Lugasi, L., Hóvári, J., Sági, K. V., & Bíró, L. (2003). The role of antioxidant phytonutrients in the prevention of diseases. Acta Biologica Szegediensis, 47, 119–125. Search in Google Scholar

[29] Malešev, D., & Kuntić, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of Serbian Chemical Society, 72, 921–939. DOI: 10.2298/jsc0710921m. http://dx.doi.org/10.2298/JSC0710921M10.2298/JSC0710921MSearch in Google Scholar

[30] Marwah, R. G., Fatope, M. O., Al Mahrooqi, R., Varma, G. B., Al Abadi, H., & Al-Burtamani, S. K. S. (2007). Antioxidant capacity of some edible and wound healing plants in Oman. Food Chemistry, 101, 465–470. DOI: 10.1016/j.foodchem.2006.02.001. http://dx.doi.org/10.1016/j.foodchem.2006.02.00110.1016/j.foodchem.2006.02.001Search in Google Scholar

[31] Medvidović-Kosanović, M., SamardŽić, M., Malatesti, N., & Sak-Bosnar, M. (2011). Electroanalytical characterization of a copper(II)-rutin complex. International Journal of Electrochemical Science, 6, 1075–1084. Search in Google Scholar

[32] Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effect of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673–751. Search in Google Scholar

[33] Niu, S. Y., Zhao, M., Hu, L. Z., & Zhang, S. H. (2008). Carbon nanotube-enhanced DNA biosensor for DNA hyberdization detection using rutin-Mn as electrochemical indicator. Sensors and Actuators B, 135, 200–205. DOI: 10.1016/j.snb.2008.08.022. http://dx.doi.org/10.1016/j.snb.2008.08.02210.1016/j.snb.2008.08.022Search in Google Scholar

[34] Panhwar, Q. K., Memon, S., & Bhanger, M. I. (2010). Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex. Journal of Molecular Structure, 967, 47–53. DOI: 10.1016/j.molstruc.2009.12.037. http://dx.doi.org/10.1016/j.molstruc.2009.12.03710.1016/j.molstruc.2009.12.037Search in Google Scholar

[35] Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. DOI: 10.1006/abio.1999.4019. http://dx.doi.org/10.1006/abio.1999.401910.1006/abio.1999.4019Search in Google Scholar PubMed

[36] Raghu, K. L., Ramesh, C. K., Srinivasa, T. R., & Jamuna, K. S. (2011). Total antioxidant capacity in aqueous extracts of some common vegetables. Asian Journal of Experimental Biological Sciences, 2, 58–62. Search in Google Scholar

[37] Ray, N. K., Sripal, R. M., Chaluvadi, M. R., & Krishna, D. R. (2001). Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian Journal of Pharmacology, 33, 2–16. Search in Google Scholar

[38] Ren, W. Y., Qiao, Z. H., Wang, H. W., Zhu, L., & Zhang, L. (2003). Flavonoids: Promising anticancer agents. Medicinal Research Reviews, 23, 519–534. DOI: 10.1002/med.10033. http://dx.doi.org/10.1002/med.1003310.1002/med.10033Search in Google Scholar PubMed

[39] Sharma, D. K. (2006). Pharmacological properties of flavonoids including flavonolignans-integration of petrocrops with drug development from plants. Journal of Scientific and Industrial Research, 65, 477–484. Search in Google Scholar

[40] Sekhon, B. S., Kaushal, G. P., & Bhatia, I. S. (1983). Use of zirconium(IV) and antimony(III) for structural investigation of flavonoids. Microchimica Acta, 80, 421–427. DOI: 10.1007/bf01202020. http://dx.doi.org/10.1007/BF0120202010.1007/BF01202020Search in Google Scholar

[41] Shyam, K. R., Mruthunjaya, K., & Kumar, G. M. (2012). Preparation, characterization and antioxidant activities of gallic acid-phospholipids complex. International Journal of Research in Pharmaceutical Sciences, 2, 138–148. Search in Google Scholar

[42] Špačkov, V., & Pazourek, J. (2013). Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromotogarphy. Chemical Papers, 67, 357–364. DOI: 10.2478/s11696-012-0302-8. http://dx.doi.org/10.2478/s11696-012-0302-810.2478/s11696-012-0302-8Search in Google Scholar

[43] Tan, M. X., Liu, Y. C., Luo, X. J., Chen, Z. F., & Liang, H. (2011). Antioxidant activities of plumbagin and its Cu (II) complex. Bioinorganic Chemistry and Applications, 2011, 898726. DOI: 10.1155/2011/898726. http://dx.doi.org/10.1155/2011/898726Search in Google Scholar

[44] Tang, A. N., Jiang, D. Q., Jiang, Y., Wang, S. W., & Yan, X. P. (2004). Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. Journal of Chromatography A, 1036, 183–188. DOI: 10.1016/j.chroma.2004.02.065. http://dx.doi.org/10.1016/j.chroma.2004.02.06510.1016/j.chroma.2004.02.065Search in Google Scholar PubMed

[45] Tian, Q. L., Liao, S. H., Lu, P., & Liu, L. J. (2006). Spectroscopic study on the interaction of Al3+ with flavonoids and BSA. Chinese Journal of Chemistry, 24, 1388–1390. DOI: 10.1002/cjoc.200690259. http://dx.doi.org/10.1002/cjoc.20069025910.1002/cjoc.200690259Search in Google Scholar

[46] Uivarosi, V., Barbuceanu, S. F., Aldea, V., Arama, C. C., Badea, M., Olar, R., & Marinescu, D. (2010). Synthesis, spectral and thermal studies of new rutin vanadyl complexes. Molecules, 15, 1578–1589. DOI: 10.3390/molecules15031578. http://dx.doi.org/10.3390/molecules1503157810.3390/molecules15031578Search in Google Scholar PubMed PubMed Central

[47] Yang, M. L., Yang, P. J., & Song, Y. M. (2005). Synthesis, characterization and interaction of transition metal complex of rutin with BSA and HAS. Chinese Journal of Inorganic Chemistry, 21, 483–489. Search in Google Scholar

[48] Yazdanbakhsh, M., Lotfian, N., & Tavakkoli, H. (2009). Synthesis and characterization of two novel trinuclear oxo-centered, of chromium and iron complexes containing unsaturated carboxylate bridging ligand. Bulletin of the Chemical Society of Ethiopia, 23, 463–466. DOI: 10.4314/bcse.v23i3.47672. http://dx.doi.org/10.4314/bcse.v23i3.4767210.4314/bcse.v23i3.47672Search in Google Scholar

[49] Zheng, L. J., Wu, Y. B., Wu, J. G., Tan, C. J., Yi, J., Chen, T. Q., & Wu, J. Z. (2012). Antioxidant activity of lotus (Nelumbo nucifera Gaertn.) receptacles of eleven cultivars grown in China. Journal of Medicinal Plants Research, 6, 1902–1911. DOI: 10.5897/jmpr11.1373. Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0494-6/html
Scroll to top button