Home Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
Article
Licensed
Unlicensed Requires Authentication

Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation

  • Ľubomír Pikna EMAIL logo , Mária Heželová , Silvia Demčáková , Miroslava Smrčová , Beatrice Plešingerová , Michal Štefanko , Mária Turáková , Milan Králik , Pavel Puliš and Peter Lehocký
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

The effect of two types of catalysts on the activity of the catalytic hydrogenation of nitrobenzene was studied. Catalysts were prepared by the surface deposition of palladium hydroxide with a simultaneous reduction with formaldehyde in a basic environment and were characterised by X-ray powder diffraction, transmission electron microscopy, adsorption-desorption, and catalytic tests — hydrogenation of nitrobenzene in methanol. The influence of the supports’ (activated carbon and a mixture of activated carbon and multi-walled carbon nanotubes) surface area is discussed. Despite having a size comparable (4–5 nm) to crystallites of metallic palladium, the catalyst prepared on a mixture of activated carbon and nanotubes (Pd/C/CNT) was significantly less active than the catalyst prepared on pure activated carbon (Pd/C); the rate of this reaction was approximately 30 % lower than the initial reaction rate. This feature could be attributed to the lower specific surface area of the Pd/C/CNT (531 m2 g−1) in comparison with the Pd/C (692 m2 g−1).

[1] Bianchi, C. L., Gotti, E., Toscano, L., & Ragaini, V. (1997). Preparation of Pd/C catalysts via ultrasound: a study of the metal distribution. Ultrasonics Sonochemistry, 4, 317–320. DOI: 10.1016/s1350-4177(97)00035-7. http://dx.doi.org/10.1016/S1350-4177(97)00035-710.1016/S1350-4177(97)00035-7Search in Google Scholar

[2] Belykh, L. B., Titova, Y. Y., Umanets, V. A., & Shmidt, F. K. (2006). Palladium hydrogenation catalysts modified with aluminum- and phosphorus-containing compounds and with alcohols: Effect of modifiers. Russian Journal of Applied Chemistry, 79, 1271–1277. DOI: 10.1134/s1070427206080106. http://dx.doi.org/10.1134/S107042720608010610.1134/S1070427206080106Search in Google Scholar

[3] Bouchenafa-Saïb, N., Grange, P., Verhasselt, P., Addoun, F., & Dubois, V. (2005). Effect of oxidant treatment of date pit active carbons used as Pd supports in catalytic hydrogenation of nitrobenzene. Applied Catalysis A: General, 286, 167–174. DOI: 10.1016/j.apcata.2005.02.022. http://dx.doi.org/10.1016/j.apcata.2005.02.02210.1016/j.apcata.2005.02.022Search in Google Scholar

[4] Campanati, M., Fornasari, G., & Vaccari, A. (2003). Fundamentals in the preparation of heterogeneous catalysts. Catalysis Today, 77, 299–314. DOI: 10.1016/s0920-5861(02)00375-9. http://dx.doi.org/10.1016/S0920-5861(02)00375-910.1016/S0920-5861(02)00375-9Search in Google Scholar

[5] Gelder, E. A., Jackson, S. D., & Lok, C. M. (2002). A study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catalysis Letters, 84, 205–208. DOI: 10.1023/a:10214 32104496. http://dx.doi.org/10.1023/A:102143210449610.1023/A:1021432104496Search in Google Scholar

[6] Gelder, E. A., Jackson, S. D., & Lok, C. M. (2006). Competitive hydrogenation of nitrobenzene, nitrosobenzene and azobenzene. In S. R. Schmidt (Ed.), Catalysis of organic reactions, twenty-first conference (pp. 167–176). Boca Raton, FL, USA: CRC Press. Search in Google Scholar

[7] Harada, T., Ikeda, S., Miyazaki, M., Sakata, T., Mori, H., & Matsumura, M. (2007). A simple method for preparing highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions. Journal of Molecular Catalysis A: Chemical, 268, 59–64. DOI: 10.1016/j.molcata.2006.12.010. http://dx.doi.org/10.1016/j.molcata.2006.12.01010.1016/j.molcata.2006.12.010Search in Google Scholar

[8] Hudec, P. (2012). Textúra tuhych materiálov. Charakterizácia adsorbentov a katalyzátorov fyzikálnou adsorpciou dusíka. Bratislava, Slovakia: Slovak Technical University. (in Slovak) Search in Google Scholar

[9] Hyde, T. (2008). Crystallite size analysis of supported platinum catalysts by XRD. Platinum Metals Review, 52, 129–130. DOI: 10.1595/147106708x299547. http://dx.doi.org/10.1595/147106708X29954710.1595/147106708X299547Search in Google Scholar

[10] Janssen, H. J., Kruithof, A. J., Steghuis, G. J., & Westerterp, K. R. (1990a). Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene. 1. Experiments, reaction scheme, and catalyst activity. Industrial & Engineering Chemistry Research, 29, 754–766. DOI: 10.1021/ie00101a008. http://dx.doi.org/10.1021/ie00101a00810.1021/ie00101a008Search in Google Scholar

[11] Janssen, H. J., Kruithof, A. J., Steghuis, G. J., & Westerterp, K. R. (1990b). Kinetics of the catalytic hydrogenation of 2,4 dinitrotoluene. 2. Modeling of the reaction rates and catalyst activity. Industrial & Engineering Chemistry Research, 29, 1822–1829. DOI: 10.1021/ie00105a013. http://dx.doi.org/10.1021/ie00105a01310.1021/ie00105a013Search in Google Scholar

[12] Jin, S., Qian, W. Z., Liu, Y., Wei, F., Wang, D. Z., & Zhang, J. C. (2010). Granulated carbon nanotubes as the catalyst support for Pt for the hydrogenation of nitrobenzene. Australian Journal of Chemistry, 63, 131–134. DOI: 10.1071/ch09162. http://dx.doi.org/10.1071/CH0916210.1071/CH09162Search in Google Scholar

[13] Kolbe, H. (1871). Ueber die reduzierenden Wirkungen des vom Palladium absorbirtenWasserstoffgases. Journal für Praktische Chemie, 4, 418–419. (in German) Search in Google Scholar

[14] Králik, M., Turáková, M., Mačák, I., & Wenchich, Š. (2012). Catalytic hydrogenation of aromatic compounds in the liquid phase. Journal of Chemistry and Chemical Engineering, 6, 1074–1082. Search in Google Scholar

[15] Ledoux, M. J., Vieira, R., Pham-Huu, C., & Keller, N. (2003). New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 216, 333–342. DOI: 10.1016/s0021-9517(02)00108-2. http://dx.doi.org/10.1016/S0021-9517(02)00108-210.1016/S0021-9517(02)00108-2Search in Google Scholar

[16] Li, C. H., Yu, Z. X., Yao, K. F., Ji, S. F., & Liang, J. (2005). Nitrobenzene hydrogenation with carbon nanotubesupported platinum catalyst under mild conditions. Journal of Molecular Catalysis A: Chemical, 226, 101–105. DOI: 10.1016/j.molcata.2004.09.046. http://dx.doi.org/10.1016/j.molcata.2004.09.04610.1016/j.molcata.2004.09.046Search in Google Scholar

[17] Ma, L., Chen, S., Lu, C. S., Zhang, Q. F., & Li, X. N. (2011). Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors. Catalysis Today, 173, 62–67. DOI: 10.1016/j.cattod.2011.06.011. http://dx.doi.org/10.1016/j.cattod.2011.06.01110.1016/j.cattod.2011.06.011Search in Google Scholar

[18] Moreno-Castilla, C., Ferro-Garca, M. A., Joly, J. P., Bautista-Toledo, I., Carrasco-Marin, F., & Rivera-Utrilla, J. (1995). Activated carbon surface modification by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir, 11, 4386–4392. DOI: 10.1021/la00011a035. http://dx.doi.org/10.1021/la00011a03510.1021/la00011a035Search in Google Scholar

[19] Navaladian, S., Viswanathan, B., Varadarajan, T. K., & Viswanath, R. P. (2008). A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Research Letters, 4, 181–186. DOI: 10.1007/s11671-008-9223-4. http://dx.doi.org/10.1007/s11671-008-9223-410.1007/s11671-008-9223-4Search in Google Scholar

[20] Nishimura, S. (2001). Handbook of heterogeneous catalytic hydrogenation for organic synthesis. New York, NY, USA: Wiley. Search in Google Scholar

[21] Obraztsova, I. I., Eremenko, N. K., & Velyakina, Y. N. (2008). Reaction kinetics of nitrobenzene hydrogenation on a palladium catalyst supported on nanodiamonds. Kinetics and Catalysis, 49, 401–406. DOI: 10.1134/s0023158408030130. http://dx.doi.org/10.1134/S002315840803013010.1134/S0023158408030130Search in Google Scholar

[22] Pham-Huu, C., Keller, N., Ehret, G., Charbonniere, L. J., Ziessel, R., & Ledoux, M. J. (2001). Carbon nanofiber supported palladium catalyst for liquid-phase reactions: An active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Journal of Molecular Catalysis A: Chemical, 170, 155–163. DOI: 10.1016/s1381-1169(01)00055- 3. http://dx.doi.org/10.1016/S1381-1169(01)00055-3Search in Google Scholar

[23] Salman, F., Park, C., & Baker, R. T. K. (1999). Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel. Catalysis Today, 53, 385–394. DOI: 10.1016/s0920-5861(99)00132-7. http://dx.doi.org/10.1016/S0920-5861(99)00132-710.1016/S0920-5861(99)00132-7Search in Google Scholar

[24] Saytzeff, M. (1872). Ueber die Einwirkung des vom Palladium absorbirten Wasserstoffs auf einige organische Verbindungen. Journal für Praktische Chemie, 6, 128–136. (in German) http://dx.doi.org/10.1002/prac.1873006011110.1002/prac.18730060111Search in Google Scholar

[25] Semikolenov, V. A. (1992). Modern approaches to the preparation of “palladium on charcoal” catalysts. Russian Chemical Reviews, 61, 168–174. DOI: 10.1070/rc1992v061n02abeh000938. http://dx.doi.org/10.1070/RC1992v061n02ABEH00093810.1070/RC1992v061n02ABEH000938Search in Google Scholar

[26] Serp, P., Corrias, M., & Kalck, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253, 337–358. DOI: 10.1016/s0926-860x(03)00549-0. http://dx.doi.org/10.1016/S0926-860X(03)00549-010.1016/S0926-860X(03)00549-0Search in Google Scholar

[27] Udayakumar, V., Alexander, S., Gayathri, V., Shivakumaraiah, & Viswanathan, B. (2011). Study on the influence of substituents upon the hydrogenation of nitrobenzene using a polymer-supported palladium-imidazole complex catalyst. Reaction Kinetics Mechanisms and Catalysis, 103, 341–352. DOI: 10.1007/s11144-011-0308-1. http://dx.doi.org/10.1007/s11144-011-0308-110.1007/s11144-011-0308-1Search in Google Scholar

[28] Wan, B. S., Liao, S. J., Xu, Y., & Yu, D. R. (1998). Synergic effect of palladium-based bimetallic catalysts for the hydrogenation of nitroaromatics. Reaction Kinetics and Catalysis Letters, 63, 397–401. DOI: 10.1007/bf02475418. http://dx.doi.org/10.1007/BF0247541810.1007/BF02475418Search in Google Scholar

[29] Watanabe, S., & Arunajatesan, V. (2010). Influence of acid modification on selective phenol hydrogenation over Pd/activated carbon catalysts. Topics in Catalysis, 53, 1150–1152. DOI: 10.1007/s11244-010-9551-3. http://dx.doi.org/10.1007/s11244-010-9551-310.1007/s11244-010-9551-3Search in Google Scholar

[30] Wu, H., Zhuo, L. M., He, Q., Liao, X. P., & Shi, B. (2009). Heterogeneous hydrogenation of nitrobenzenes over recyclable Pd(0) nanoparticle catalysts stabilized by polyphenol-grafted collagen fibers. Applied Catalysis A: General, 366, 44–56. DOI: 10.1016/j.apcata.2009.06.024. http://dx.doi.org/10.1016/j.apcata.2009.06.02410.1016/j.apcata.2009.06.024Search in Google Scholar

[31] Zaitseva, N. A., Goidin, V. V., Molchanov, V. V., Chesnokov, V. V., Buyanov, R. A., & Utkin, V. A. (2011). Catalysts based on filamentous carbon in the hydrogenation of aromatic compounds. Kinetics and Catalysis, 52, 770–773. DOI: 10.1134/s0023158411050181. http://dx.doi.org/10.1134/S002315841105018110.1134/S0023158411050181Search in Google Scholar

[32] Zhao, Y., Li, C. H., Yu, Z. X., Yao, K. F., Ji, S. F., & Liang, J. (2007). Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Materials Chemistry and Physics, 103, 225–229. DOI: 10.1016/j.matchemphys.2007.02.045. http://dx.doi.org/10.1016/j.matchemphys.2007.02.04510.1016/j.matchemphys.2007.02.045Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0497-3/html
Scroll to top button