Home Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
Article
Licensed
Unlicensed Requires Authentication

Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers

  • Jia-Jia Liu EMAIL logo , Chang Liu , Ke-Wen Tang and Pan-Liang Zhang
Published/Copyright: January 28, 2014
Become an author with De Gruyter Brill

Abstract

This paper presents a biphasic recognition chiral extraction system developed as a new chiral separation technology for the separation of pantoprazole enantiomers, combining a hydrophilic β-CD derivative in the aqueous phase and a hydrophobic tartaric acid in the organic phase which preferentially recognise the (R)-enantiomer and (S)-enantiomer, respectively. In this study, a number of factors which influence the efficiency of the extraction were investigated including types of organic solvents, β-CD and tartaric acid esters and their concentrations, pH and temperature. As a result, enantioselectivity for pantoprazole enantiomers can be improved up to 1.42 under optimised conditions; in addition, it is clear that the combined action of β-CD and tartaric acid esters leads to formation of the biphasic chiral extraction system with a stronger separation capacity than a monophasic chiral extraction system.

[1] Andersson, S., Nelander, H., & Öhlen, K. (2007). Preparative chiral chromatography and chiroptical characterization of enantiomers of omeprazole and related benzimidazoles. Chirality, 19, 706–715. DOI: 10.1002/chir.20375. http://dx.doi.org/10.1002/chir.2037510.1002/chir.20375Search in Google Scholar

[2] Babić, K., Driessen, G. H. M., van der Ham, A. G. J., & de Haan, A. B. (2007). Chiral separation of amino-alcohols using extractant impregnated resins. Journal of Chromatography A, 1142, 84–92. DOI: 10.1016/j.chroma.2006.09.045. http://dx.doi.org/10.1016/j.chroma.2006.09.04510.1016/j.chroma.2006.09.045Search in Google Scholar

[3] Colera, M., Costero, A. M., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039. http://dx.doi.org/10.1016/j.tetasy.2005.06.03910.1016/j.tetasy.2005.06.039Search in Google Scholar

[4] Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39, 1033–1046. DOI: 10.1016/s0032-9592(03)00258-9. http://dx.doi.org/10.1016/S0032-9592(03)00258-910.1016/S0032-9592(03)00258-9Search in Google Scholar

[5] Dimitrova, P., & Bart, H. J. (2009). Extraction of amino acid enantiomers with microemulsions. Chemical Engineering & Technology, 32, 1527–1534. DOI: 10.1002/ceat.200900276. http://dx.doi.org/10.1002/ceat.20090027610.1002/ceat.200900276Search in Google Scholar

[6] Ding, H. B., Carr, P. W., & Cussler, E. L. (1992). Racemic leucine separation by hollow-fiber extraction. AIChE Journal, 38, 1493–1498. DOI: 10.1002/aic.690381002. http://dx.doi.org/10.1002/aic.69038100210.1002/aic.690381002Search in Google Scholar

[7] Dorey, E. (2000). Chiral drugs viable, despite failure. Nature Biotechnology, 18, 1239–1240. DOI: 10.1038/82335. http://dx.doi.org/10.1038/8233510.1038/82335Search in Google Scholar

[8] Eberle, D., Hummel, R. P., & Kuhn, R. (1997). Chiral resolution of pantoprazole sodium and related sulfoxides by complex formation with bovine serum albumin in capillary electrophoresis. Journal of Chromatography A, 759, 185–192. DOI: 10.1016/s0021-9673(96)00769-8. http://dx.doi.org/10.1016/S0021-9673(96)00769-810.1016/S0021-9673(96)00769-8Search in Google Scholar

[9] Graul, A., Castaner, R., & Castaner, J. (1999). Esomeprazole magnesium. Drugs of the Future, 24, 1178–1183. DOI: 10.1358/dof.1999.024.11.559951. http://dx.doi.org/10.1358/dof.1999.024.11.55995110.1358/dof.1999.024.11.559951Search in Google Scholar

[10] Guan, J., Yang, J., Bi, Y., Shi, S., Yan, F., & Li, F. (2008). Determination of the enantiomeric impurity in S-(-)pantoprazole using high performance liquid chromatography with sulfobutylether-beta-cyclodextrin as chiral additive. Journal of Separation Science, 31, 288–293. DOI: 10.1002/jssc.200700369. http://dx.doi.org/10.1002/jssc.20070036910.1002/jssc.200700369Search in Google Scholar PubMed

[11] Guan, J., Yan, F., Shi, S., & Wang, S. (2012). Optimization and validation of a new CE method for the determination of pantoprazole enantiomers. Electrophoresis, 33, 1631–1636. DOI: 10.1002/elps.201100650. http://dx.doi.org/10.1002/elps.20110065010.1002/elps.201100650Search in Google Scholar

[12] Haginaka, J. (2000). Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. Journal of Chromatography A, 875, 235–254. DOI: 10.1016/s0021-9673(99)01168-1. http://dx.doi.org/10.1016/S0021-9673(99)01168-110.1016/S0021-9673(99)01168-1Search in Google Scholar

[13] Heldin, E., Lindner, K. J., Pettersson, C., Lindner, W., & Rao, R. (1991). Tartaric acid derivatives as chiral selectors in liquid chromatography. Chromatographia, 32, 407–416. DOI: 10.1007/bf02327970. http://dx.doi.org/10.1007/BF0232797010.1007/BF02327970Search in Google Scholar

[14] Hallett, A. J., Kwant, G. J., & de Vries, J. G. (2009). Continuous separation of racemic 3,5-dinitrobenzoyl-amino acids in a centrifugal contact separator with the aid of Cinchona-based chiral host compounds. Chemistry — A European Journal, 15, 2111–2120. DOI: 10.1002/chem.200800797. http://dx.doi.org/10.1002/chem.20080079710.1002/chem.200800797Search in Google Scholar

[15] Horvath, J. D., Koritnik, A., Kamakoti, P., Sholl, D. S., & Gellman, A. J. (2004). Enantioselective separation on a naturally chiral surface. Journal of the American Chemical Society, 126, 14988–14994. DOI: 10.1021/ja045537h. http://dx.doi.org/10.1021/ja045537h10.1021/ja045537hSearch in Google Scholar

[16] Kocabas, E., Karakucuk, A., Sirit, A., & Yilmaz, M. (2006). Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amino acid methylesters, Tetrahedron: Asymmetry, 17, 1514–1520. DOI: 10.1016/j.tetasy.2006.05.016. http://dx.doi.org/10.1016/j.tetasy.2006.05.01610.1016/j.tetasy.2006.05.016Search in Google Scholar

[17] Koska, J., & Haynes, C. A. (2001). Modelling multiple chemical equilibria in partition systems. Chemical Engineering Science, 56, 5853–5864. DOI: 10.1016/s0009-2509(00)00419-x. http://dx.doi.org/10.1016/S0009-2509(00)00419-X10.1016/S0009-2509(00)00419-XSearch in Google Scholar

[18] Miyako, E., Maruyama, T., Kamiya, N., & Goto, M. (2004). Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex. Journal of the American Chemical Society, 126, 8622–8623. DOI: 10.1021/ja049378d. http://dx.doi.org/10.1021/ja049378d10.1021/ja049378dSearch in Google Scholar

[19] Pietraszkiewicz, M., Koźbiał, M., & Pietraszkiewicz, O. (1998). Chiral discrimination of amino acids and their potassium or sodium salts by optically active crown ether derived from Dmannose. Journal of Membrane Science, 138, 109–113. DOI: 10.1016/s0376-7388(97)00218-4. http://dx.doi.org/10.1016/S0376-7388(97)00218-410.1016/S0376-7388(97)00218-4Search in Google Scholar

[20] Prelog, V., Kovačević, M., & Egli, M. (1989). Lipophilic tartaric acid esters as enantioselective ionophores. Angewandte Chemie International Edition in English, 28, 1147–1152. DOI: 10.1002/anie.198911473. http://dx.doi.org/10.1002/anie.19891147310.1002/anie.198911473Search in Google Scholar

[21] Redondo, J., Capdevila, A., Latorre, I., & Bertran, J. (2012). Host-guest complexation of omeprazole, pantoprazole and rabeprazole sodium salts with cyclodextrins: an NMR study on solution structures and enantiodiscrimination power. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 73, 225–236. DOI: 10.1007/s10847-011-0046-z. http://dx.doi.org/10.1007/s10847-011-0046-z10.1007/s10847-011-0046-zSearch in Google Scholar

[22] Snyder, S. E., Carey, J. R., & Pirkle, W. H. (2005). Biphasic enantioselective partitioning studies using small-molecule chiral selectors. Tetrahedron, 61, 7562–7567. DOI: 10.1016/j.tet.2005.05.060. http://dx.doi.org/10.1016/j.tet.2005.05.06010.1016/j.tet.2005.05.060Search in Google Scholar

[23] Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2007). Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines, amino acids and amino-alcohols. Chemical Engineering Science, 62, 1395–1407. DOI: 10.1016/j.ces.2006.11.043. http://dx.doi.org/10.1016/j.ces.2006.11.04310.1016/j.ces.2006.11.043Search in Google Scholar

[24] Tan, B., Luo, G., & Wang, J. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021. http://dx.doi.org/10.1016/j.seppur.2006.08.02110.1016/j.seppur.2006.08.021Search in Google Scholar

[25] Tanaka, M., Yamazaki, H., & Hakusui, H. (1995). Direct HPLC separation of enantiomers of pantoprazole and other benzimidazole sulfoxides using cellulose-based chiral stationary phases in reversed-phase mode. Chirality, 7, 612–615. DOI: 10.1002/chir.530070810. http://dx.doi.org/10.1002/chir.53007081010.1002/chir.530070810Search in Google Scholar

[26] Tanaka, M., Ohkubo, T., Otani, K., Suzuki, A., Kaneko, S., Sugawara, K., Ryokawa, Y., Hakusui, H., Yamamori, S., & Ishizaki, T. (1997a). Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4_-hydroxylation phenotype and genotype. Clinical Pharmacology & Therapeutics, 62, 619–628. DOI: 10.1016/s0009-9236(97)90081-3. http://dx.doi.org/10.1016/S0009-9236(97)90081-310.1016/S0009-9236(97)90081-3Search in Google Scholar

[27] Tanaka, M., Yamazaki, H., Hakusui, H., Nakamichi, N., & Sekino, H. (1997b). Differential stereoselective pharmacokinetics of pantoprazole, a proton pump inhibitor in extensive and poor metabolizers of pantoprazole-a preliminary study. Chirality, 9, 17–21. DOI: 10.1002/(SICI)1520-636X(1997)9:1<17::AID-CHIR4>3.0.CO;2-D. http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:1<17::AID-CHIR4>3.0.CO;2-D10.1002/(SICI)1520-636X(1997)9:1<17::AID-CHIR4>3.0.CO;2-DSearch in Google Scholar

[28] Tanaka, M., Ohkubo, T., Otani, K., Suzuki, A., Kaneko, S., Sugawara, K., Ryokawa, Y., & Ishizaki, T. (2001). Stereoselective pharmacokinetics of pantoprazole, a proton pump inhibitor, in extensive and poor metabolizers of S-mephenytoin. Clinical Pharmacology & Therapeutics, 69, 108–113. DOI: 10.1067/mcp.2001.113723. http://dx.doi.org/10.1067/mcp.2001.11372310.1067/mcp.2001.113723Search in Google Scholar

[29] Tang, S., Zhao, R., Ren, J., Wang, D., Guo, L., & Zhao, H. (2006). Enantiomeric separation of pantoprazole by HPLC on a cellulose-based chiral stationary phase. Chinese Journal of Chromatography, 24, 207–207. Search in Google Scholar

[30] Tang, L., Choi, S., Nandhakumar, R., Park, H., Chung, H., Chin, J., & Kim, K. M. (2008). Reactive extraction of enantiomers of 1,2-amino alcohols via stereoselective thermodynamic and kinetic processes. The Journal of Organic Chemistry, 73, 5996–5999. DOI: 10.1021/jo800670t. http://dx.doi.org/10.1021/jo800670t10.1021/jo800670tSearch in Google Scholar

[31] Tombo, G. M. R., & Belluš, D. (1991). Chirality and crop protection. Angewandte Chemie International Edition in English, 30, 1193–1215. DOI: 10.1002/anie.199111933. http://dx.doi.org/10.1002/anie.19911193310.1002/anie.199111933Search in Google Scholar

[32] Toribio, L., del Nozal, M. J., Bernal, J. L., Alonso, C., & Jimenez, J. J. (2005). Comparative study of the enantioselective separation of several antiulcer drugs by high-performance liquid chromatography and supercritical fluid chromatography. Journal of Chromatography A, 1091, 118–123. DOI: 10.1016/j.chroma.2005.07.018. http://dx.doi.org/10.1016/j.chroma.2005.07.01810.1016/j.chroma.2005.07.018Search in Google Scholar PubMed

[33] Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010. http://dx.doi.org/10.1016/j.seppur.2006.07.01010.1016/j.seppur.2006.07.010Search in Google Scholar

[34] Yoon, J., & Cram, D. J. (1997). Chiral recognition properties in complexation of two asymmetric hemicarcerands. Journal of the American Chemical Society, 119, 11796–11806. DOI: 10.1021/ja972719l. http://dx.doi.org/10.1021/ja972719l10.1021/ja972719lSearch in Google Scholar

[35] Zhou, C. S., Xu, P., Tang, K. W., Jiang, X. Y., Yang, T., & Zhang, P. L. (2013). Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling. Chemical Papers, 67, 155–163. DOI: 10.2478/s11696-012-0268-6. http://dx.doi.org/10.2478/s11696-012-0268-610.2478/s11696-012-0268-6Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0501-y/html
Scroll to top button