Startseite Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations

  • M. Percino EMAIL logo , Margarita Cerón , Maria Castro , Guillermo Soriano-Moro , Victor Chapela und Francisco Meléndez
Veröffentlicht/Copyright: 28. Januar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Knoevenagel condensation of phenylacetonitrile with 4-diphenylaminophenylacetonitrile in the presence of piperidine was carried out to obtain a novel conjugated compound. In addition to the expected compound 2-(phenyl)-3-(4-diphenylaminophenyl)acrylonitrile (I), the 3-((4-diphenylamino)phenyl)-2,4-diphenylpentanedinitrile (II) was also obtained with a good yield. Compound II was obtained as a result of the Michael addition of phenylacetonitrile with 2-(phenyl)-3-(4-diphenylaminophenyl)acrylonitrile (I). Conversely, when the same reaction was performed in the presence of KOH as catalyst, only the α,β-unsaturated nitrile (I) was afforded with a 92 % yield. The structures were confirmed with IR, EI-MS and NMR spectroscopy. Single crystals I and II were formed and their structures were determined by X-ray single-crystal diffraction analysis. Crystal I belongs to the monoclinic system with space group P21/n having unit cell parameters of a = 16.8589(5) Å, b = 6.68223(17) Å, c = 19.8289(7) Å, β = 111.133(4)○ and Z = 4. Crystal II belongs to the same monoclinic system with space group P21/c, having unit cell parameters of a = 10.8597(4) Å, b = 24.7533(10) Å, c = 9.7832(4) Å, β = 91.297(3)○ and Z = 4. In addition to the structural data analysis, some theoretical calculations that reveal the nature of relevant structure-property relationships are also reported.

[1] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, 1987, S1–S19. DOI: 10.1039/p298700000s1. 10.1039/p298700000s1Suche in Google Scholar

[2] Augé, J., Lubin, N., & Lubineau, A. (1994). Acceleration in water of the Baylis-Hillman reaction. Tetrahedron Letters, 35, 7947–7948. DOI: 10.1016/0040-4039(94)80018-9. 10.1016/0040-4039(94)80018-9Suche in Google Scholar

[3] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Suche in Google Scholar

[4] Bellamy, L. J. (1975). The infra-red spectra of complex molecules. New York, NY, USA: Wiley. http://dx.doi.org/10.1007/978-94-011-6017-910.1007/978-94-011-6017-9Suche in Google Scholar

[5] Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728. DOI: 10.1063/1.1674902. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Suche in Google Scholar

[6] D’Sa, B. A., Kisanga, P., & Verkade, J. G. (1998). Direct synthesis of α,β-unsaturated nitriles catalyzed by nonionic superbases. The Journal of Organic Chemistry, 63, 3961–3967. DOI: 10.1021/jo972343u. http://dx.doi.org/10.1021/jo972343u10.1021/jo972343uSuche in Google Scholar

[7] Fraysse, M. J. (1980). Nitriles: their application in perfumery. Perfumer & Flavorist, 4, 11–12. Suche in Google Scholar

[8] Fringuelli, F., Pani, G., Piermatti, O., & Pizzo, F. (1994). Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 50, 11499–11508. DOI: 10.1016/s0040-4020(01)89287-5. 10.1016/S0040-4020(01)89287-5Suche in Google Scholar

[9] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 Revision A.1 [computer software]. Wallingford, CT, USA: Gaussian. Suche in Google Scholar

[10] Frost, H. V. (1889). Ueber die Condensation von Benzylcyanid und seinen Substitutionsproducten mit Aldehyden und mit Amylnitrit. Justus Liebigs Annalen der Chemie, 250, 156–166. DOI: 10.1002/jlac.18892500106. (in German) http://dx.doi.org/10.1002/jlac.1889250010610.1002/jlac.18892500106Suche in Google Scholar

[11] Guillemin, J. C., Breneman, C. M., Joseph, J. C., & Ferris, J. P. (1998). Regioselectivity of the photochemical addition of ammonia, phosphine, and silane to olefinic and acetylenic nitriles. Chemistry — A European Journal, 4, 1074–1082. DOI: 10.1002/(sici)1521-3765(19980615)4:6〈1074::aid-chem1074〉3.0.co;2-b. http://dx.doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-B10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-BSuche in Google Scholar

[12] Guillot, R., Loupy, A., Meddour, A., Pellet, M., & Petit, A. (2005). Solvent-free condensation of arylacetonitrile with aldehydes. Tetrahedron, 61, 10129–10137. DOI: 10.1016/j.tet.2005.07.040. http://dx.doi.org/10.1016/j.tet.2005.07.04010.1016/j.tet.2005.07.040Suche in Google Scholar

[13] Improta, R., & Santoro, F. (2005). Excited-state behavior of trans and cis isomers of stilbene and stiff stilbene: A TD-DFT study. The Journal of Physical Chemistry A, 109, 10058–10067. DOI: 10.1021/jp054250j. http://dx.doi.org/10.1021/jp054250j10.1021/jp054250jSuche in Google Scholar

[14] Jenner, G. (1996). Comparative study of physical and chemical activation modes. The case of the synthesis of β-amino derivatives. Tetrahedron, 52, 13557–13568. DOI: 10.1016/0040-4020(96)00831-9. 10.1016/0040-4020(96)00831-9Suche in Google Scholar

[15] Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. (in German) http://dx.doi.org/10.1002/cber.1896029013310.1002/cber.18960290133Suche in Google Scholar

[16] Lin, R., Horng, H. C., Lin, H.M., Lin, S. Y., Hon, Y. S., & Chow, T. J. (2010). 2-Amino-3-naphthylacrylonitrile derivatives as green luminance dyes. Journal of the Chinese Chemical Society, 57, 805–810. http://dx.doi.org/10.1002/jccs.20100002710.1002/jccs.201000027Suche in Google Scholar

[17] Lorente, A., Galan, C., Fonseca, I., & Sanz-Aparicio, J. (1995). 1-Aminocyclohexene-2,4-dicarbonitrile derivatives. Syntheses and structural study. Canadian Journal of Chemistry, 73, 1546–1555. DOI: 10.1139/v95-192. 10.1139/v95-192Suche in Google Scholar

[18] Loupy, A., Pellet, M., Petit, A., & Vo-Thanh, G. (2005). Solvent-free condensation of phenylacetonitrile and nonanenitrile with 4-methoxybenzaldehyde: Optimization and mechanistic studies. Organic & Biomolecular Chemistry, 3, 1534–1540. DOI: 10.1039/b418156e. http://dx.doi.org/10.1039/b418156e10.1039/b418156eSuche in Google Scholar

[19] Lubineau, A., & Augé, J. (1999). Water as solvent in organic synthesis. In P. Knochel (Ed.), Modern solvents in organic synthesis (pp. 1–39). Berlin, Germany: Springer. DOI: 10.1007/3-540-48664-x 1. http://dx.doi.org/10.1007/3-540-48664-X_110.1007/3-540-48664-XSuche in Google Scholar

[20] Mabrouk, A., Azazi, A., & Alimi, K. (2010). On the properties of new benzothiazole derivatives for organic light emitting diodes (OLEDs): A comprehensive theoretical study. Journal of Physics and Chemistry of Solids, 71, 1225–1235. DOI: 10.1016/j.jpcs.2010.04.020. http://dx.doi.org/10.1016/j.jpcs.2010.04.02010.1016/j.jpcs.2010.04.020Suche in Google Scholar

[21] Michel, F., Mecklein, L., Crastes de Paulet, A., Doré, J. C., Gilbert, J., & Miquel, J. F. (1984). The effect of various acrylonitriles and related compounds on prostaglandin biosynthesis. Prostaglandins, 27, 69–84. DOI: 10.1016/0090-6980(84)90221-1. http://dx.doi.org/10.1016/0090-6980(84)90221-110.1016/0090-6980(84)90221-1Suche in Google Scholar

[22] Mori, K. (1976). Synthetic chemistry of insect pheromones and juvenile hormones (Recent developments in the chemistry of natural carbon compounds). Budapest, Hungary: Akadémiai Kiadó. Suche in Google Scholar

[23] Nakanishi, K., & Solomon, P. H. (1977). Infrared absorption spectroscopy. Oakland, CA, USA: Holden-Day. Suche in Google Scholar

[24] Peat, J. R., Minchin, F. R., Jeffcoat, B., & Summerfield, R. J. (1981). Young reproductive structures promote nitrogen fixation in soya bean. Annals of Botany, 48, 177–182. 10.1093/oxfordjournals.aob.a086111Suche in Google Scholar

[25] Percino, M. J., Chapela, V. M., Montiel, L. F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z. http://dx.doi.org/10.2478/s11696-010-0012-z10.2478/s11696-010-0012-zSuche in Google Scholar

[26] Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x. http://dx.doi.org/10.2478/s11696-010-0075-x10.2478/s11696-010-0075-xSuche in Google Scholar

[27] Percino, M. J., Chapela, V. M., Cerón, M., Castro, M. E., Soriano-Moro, G., Pérez-Gutiérrez, E., & Meléndez-Bustamante, F. (2012). Synthesis and characterization of conjugated pyridine-(N-diphenylamino) acrylonitrile derivatives: Photophysical properties. Journal of Materials Science Research, 1, 181–192. DOI: 10.5539/jmsr.v1n2p181. http://dx.doi.org/10.5539/jmsr.v1n2p18110.5539/jmsr.v1n2p181Suche in Google Scholar

[28] Pérez-Gutiérrez, E., Percino, M. J., Chapela, V. M., Cerón, M., Maldonado, J. L., & Ramos-Ortiz, G. (2011). Synthesis, characterization and photophysical properties of pyridinecarbazole acrylonitrile derivatives. Materials, 4, 562–574. DOI: 10.3390/ma4030562. http://dx.doi.org/10.3390/ma403056210.3390/ma4030562Suche in Google Scholar PubMed PubMed Central

[29] Saidalimu, I., Fang, X., Lv, W. W., Yang, X. Y., He, X. P., Zhang, J. Y., Wu, F. H., & Pizzo, F. (2013). Organocatalytic asymmetric Michael addition/carbon-carbon bond cleavage of trifluoromethyl α-fluorinated gem-diols to nitroolefins. Advanced Synthesis & Catalysis, 355, 857–863. DOI: 10.1002/adsc.201200757. http://dx.doi.org/10.1002/adsc.20120075710.1002/adsc.201200757Suche in Google Scholar

[30] Sağirli, A., Dürüst, Y., Kariuki, B., & Knight, D. W. (2013). A practical isocyanide-based multicomponent synthesis of polysubstituted cyclopentenes. Tetrahedron, 69, 69–72. DOI: 10.1016/j.tet.2012.10.065. http://dx.doi.org/10.1016/j.tet.2012.10.06510.1016/j.tet.2012.10.065Suche in Google Scholar

[31] Sheldrick, G. M. (1998). SHELXL 97 [computer software]. Göttingen, Germany: University of Göttingen. Suche in Google Scholar

[32] The Cambridge Crystallographic Data Centre (2012). Mercury 3.0 [computer software]. Cambridge, UK: The Cambridge Crystallographic Data Centre. Suche in Google Scholar

[33] Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). London, UK: MacGraw-Hill. Suche in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0503-9/html
Button zum nach oben scrollen