Home Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Article
Licensed
Unlicensed Requires Authentication

Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones

  • Pattusamy Nithya EMAIL logo , Fazlur-Rahman Nawaz Khan , Selvaraj Roopan , Uma Shankar and Jong Jin
Published/Copyright: July 23, 2011
Become an author with De Gruyter Brill

Abstract

An efficient and environmentally benign one-pot method for the synthesis of 1-methyl-2,6-diarylpiperidin-4-ones using montmorillonite K-10 as a catalyst has been developed. Antimicrobial activity of the compounds has been tested against selected representatives of Gram-positive and Gram-negative bacteria and fungi.

[1] Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S., & Jeong, Y. T. (2009). Synthesis and spectral characterization of a new class of N-(N-methylpiperazinoacetyl)-2,6-diarylpiperidin-4-ones: Antimicrobial, analgesic and antipyretic studies. European Journal of Medicinal Chemistry, 44, 577–592. DOI: 10.1016/j.ejmech.2008.03.031. http://dx.doi.org/10.1016/j.ejmech.2008.03.03110.1016/j.ejmech.2008.03.031Search in Google Scholar

[2] Balasubramanian, M., & D’souza, A. (1963). Preparation and configuration of some cyclohexanols. Tetrahedron Letters, 4, 1891–1895. DOI: 10.1016/S0040-4039(01)90936-0. http://dx.doi.org/10.1016/S0040-4039(01)90936-010.1016/S0040-4039(01)90936-0Search in Google Scholar

[3] Balasubramanian, M., & Padma, N. (1968). Catalytic reduction of some 4-piperidones. Tetrahedron, 24, 5395–5398. DOI: 10.1016/S0040-4020(01)96333-1. http://dx.doi.org/10.1016/S0040-4020(01)96333-110.1016/S0040-4020(01)96333-1Search in Google Scholar

[4] Balasubramanian, M., & Padma, N. (1963a). Boat-chair equilibrium in a 4-piperidinol. Tetrahedron Letters, 4, 49–52. DOI: 10.1016/S0040-4039(01)90575-1. http://dx.doi.org/10.1016/S0040-4039(01)90575-110.1016/S0040-4039(01)90575-1Search in Google Scholar

[5] Balasubramanian, M. B., & Padma, N. (1963b). Studies on conformation—I: Preparation and stereochemistry of some 4-piperidinols. Tetrahedron, 19, 2135–2143. DOI: 10.1016/0040-4020(63)85028-0. http://dx.doi.org/10.1016/0040-4020(63)85028-010.1016/0040-4020(63)85028-0Search in Google Scholar

[6] Baliah, V., & Gopalakrishnan, V. (1954). Synthesis of some 4-piperidone derivatives. Journal of the Indian Chemical Society, 31, 250–252. Search in Google Scholar

[7] Baliah, V., Jeyaraman, R., & Chandrasekaran, L. (1983). Synthesis of 2,6-disubstituted piperidines, oxanes, and thianes. Chemical Reviews, 83, 379–423. DOI: 10.1021/cr00056a002. http://dx.doi.org/10.1021/cr00056a00210.1021/cr00056a002Search in Google Scholar

[8] Barry, A L. (1976). The antimicrobial susceptibility test: Principles and practices. Philadelphia, PA, USA: Lea & Febiger. Search in Google Scholar

[9] Dasgupta, S., & Török, B. (2008). Application of clay catalysts in organic synthesis. A review. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 40, 1–65 DOI: 10.1080/00304940809356640. http://dx.doi.org/10.1080/0030494080935664010.1080/00304940809356640Search in Google Scholar

[10] Dhar, M. L., Dhar, M. M., Dhawan, B. N., Mehrotra, B. N., & Ray, C. (1968). Screening of Indian plants for biological activity: I. Indian Journal of Experimental Biology, 6, 232–247. Search in Google Scholar

[11] Dimmock, J. R., Arora, V. K., Quail, J. W., Pugazhenthi, U., Allen, T. M., Kao, G. Y., & De Clercq, E. (1994). Cytotoxic evaluation of some 3,5-diarylidene-4-piperidones and various related quaternary ammonium compounds and analogs. Journal of Pharmaceutical Sciences, 83, 1124–1130. DOI: 10.1002/jps.2600830811. http://dx.doi.org/10.1002/jps.260083081110.1002/jps.2600830811Search in Google Scholar PubMed

[12] Edwards, M. W., Daly, J. W., & Myers, C. W. (1988). Alkaloids from a Panamanian poison frog, dendrobates speciosus: Identification of pumiliotoxin-A and allo-pumiliotoxin class alkaloids, 3,5-disubstituted dndolizidines, 5-substituted 8-methylindolizidines, and a 2-dethyl-6-nonyl-4-hydroxypiperidine. Journal of Natural Products, 51, 1188–1197. DOI: 10.1021/np50060a023. http://dx.doi.org/10.1021/np50060a02310.1021/np50060a023Search in Google Scholar PubMed

[13] Eliel, E. L., Manoharan, M., Hodgson, D. J., Eggleston, D. S., & Jeyaraman, R. (1982). Conformational analysis. 43. A boat-shaped piperidine ring in 3-thia-7-aza-6,8-diphenylbicyclo[3.3.1]nonan-9-ol. The Journal of Organic Chemistry, 47, 4353–4356. DOI: 10.1021/jo00143a041. http://dx.doi.org/10.1021/jo00143a04110.1021/jo00143a041Search in Google Scholar

[14] Ganellin, C. R., & Spickett, R. G. W. (1965). Compounds affecting the central nervous system. I. 4-Piperidones and related compounds. Journal of Medicinal Chemistry, 8, 619–625. DOI: 10.1021/jm00329a015. http://dx.doi.org/10.1021/jm00329a01510.1021/jm00329a015Search in Google Scholar PubMed

[15] Gu, H., Zheng, R., Zhang, X., & Xu, B. (2004). Facile onepot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. Journal of the American Chemical Society, 126, 5664–5665. DOI: 10.1021/ja0496423. http://dx.doi.org/10.1021/ja049642310.1021/ja0496423Search in Google Scholar PubMed

[16] Jeyaraman, R., Senthilkumar, U. P., & Bigler, P. (1995). Chemistry of N-nitroso compounds. 7. Conformational preferences of hexahydro-N1,N4-dinitroso-r-2,c-7-diphenyl-1H-1,4-diazepines: Use of modified 1D HOHAHA and NOE techniques. The Journal of Organic Chemistry, 60, 7461–7470. DOI: 10.1021/jo00128a018. http://dx.doi.org/10.1021/jo00128a01810.1021/jo00128a018Search in Google Scholar

[17] Juang, S.-S., Chang, M., Wang, L. F., Han, J. L., & Ong, C. W. (2005). One pot synthesis of fused [1,2-a]pyrrole from 1,6-dioxo-2,4-diene and haloalkyl primary amine. Tetrahedron, 61, 1693–1697. DOI: 10.1016/j.tet.2004.12.051. http://dx.doi.org/10.1016/j.tet.2004.12.05110.1016/j.tet.2004.12.051Search in Google Scholar

[18] Katritzky, A. R., & Fan, W. (1990). The chemistry of benzotriazole. A novel and versatile synthesis of 1-alkyl-, 1-aryl-, 1-(alkylamino)-, or 1-amido-substituted and of 1,2,6-trisubstituted piperidines from glutaraldehyde and primary amines or monosubstituted hydrazines. The Journal of Organic Chemistry, 55, 3205–3209. DOI: 10.1021/jo00297a041. http://dx.doi.org/10.1021/jo00297a04110.1021/jo00297a041Search in Google Scholar

[19] Ma, Y., Qian, C., Wang, L., & Yang, M. (2000). Lanthanide triflate catalyzed Biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions. The Journal of Organic Chemistry, 65, 3864–3868. DOI: 10.1021/jo9919052. http://dx.doi.org/10.1021/jo991905210.1021/jo9919052Search in Google Scholar PubMed

[20] Menche, D., Arikan, F., Li, J., Rudolph, S., & Sasse, F. (2007). Efficient one-pot synthesis of biologically active polysubstituted aromatic amines. Bioorganic & Medicinal Chemistry, 15, 7311–7317. DOI: 10.1016/j.bmc.2007.08.048. http://dx.doi.org/10.1016/j.bmc.2007.08.04810.1016/j.bmc.2007.08.048Search in Google Scholar PubMed

[21] Mobio, I. G., Soldatenkov, A. T., Fedorov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S., Andreyeva, E. I., Minayev, L. I., Koltsova, S. S., Denisov, E. N., Kapitonenko, T. A., & Ovodenko, L. A. (1989). Synthesis and physiological activity of 2,3,6-triaryl-4-oxo (hydroxy, oximino, amino) piperidine. Khimiko Farmatsevticheskii Zhurnal, 23, 421–427. Search in Google Scholar

[22] Nikalje, M. D., Phukan, P., & Sudalai, A. (2000). Recent advances in clay-catalyzed organic transformations. Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 32, 1–40. DOI: 10.1080/00304940009356743. http://dx.doi.org/10.1080/0030494000935674310.1080/00304940009356743Search in Google Scholar

[23] Nithya, P., Hathwar, V. R., Maiyalagan, T., Kazak, C., & Nawaz Khan, F. (2009). 1,3-Dimethyl-2,6-diphenylpiperidin-4-one. Acta Crystallographica Section E, E65, o439. DOI: 10.1107/S1600536809003419. http://dx.doi.org/10.1107/S160053680900341910.1107/S1600536809003419Search in Google Scholar PubMed PubMed Central

[24] Noller, C. R., & Baliah, V. (1948). The preparation of some piperidine derivatives by the Mannich reaction. Journal of the American Chemical Society, 70, 3853–3855. DOI: 10.1021/ja01191a092. http://dx.doi.org/10.1021/ja01191a09210.1021/ja01191a092Search in Google Scholar PubMed

[25] Pati, H. N., Das, U., Das, S., Bandy, B., De Clercq, E., Balzarini, J., Kawase, M., Sakagami, H., Quail, J. W., Stables, J. P., & Dimmock, J. R. (2009). The cytotoxic properties and preferential toxicity to tumour cells displayed by some 2,4-bis(benzylidene)-8-methyl-8-azabicyclo[3.2.1]octan-3-ones and 3,5-bis(benzylidene)-1-methyl-4-piperidones. European Journal of Medicinal Chemistry, 44, 54–62. DOI: 10.1016/j.ejmech.2008.03.015. http://dx.doi.org/10.1016/j.ejmech.2008.03.01510.1016/j.ejmech.2008.03.015Search in Google Scholar

[26] Polshettiwar, V., & Varma, R. S. (2008). Microwave-assisted organic synthesis and transformations using benign reaction media. Accounts of Chemical Research, 41, 629–639. DOI: 10.1021/ar700238s. http://dx.doi.org/10.1021/ar700238s10.1021/ar700238sSearch in Google Scholar

[27] Rameshkumar, N., Veena, A., Ilavarasan, R., Adiraj, M., Shanmugapandiyan, P., & Sridhar, S. K. (2003). Synthesis and biological activities of 2,6-diaryl-3-methyl-4-piperidone derivatives. Biological & Pharmaceutical Bulletin, 26, 188–193. DOI: 10.1248/bpb.26.188. http://dx.doi.org/10.1248/bpb.26.18810.1248/bpb.26.188Search in Google Scholar

[28] Roopan, S. M., & Nawaz Khan, F. R. (2010). ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/s11696-010-0045-3. http://dx.doi.org/10.2478/s11696-010-0045-310.2478/s11696-010-0045-3Search in Google Scholar

[29] Srinivasan, M., Perumal, S., & Selvaraj, S. (2006). Synthesis, stereochemistry, and antimicrobial activity of 2,6-diaryl-3-(arylthio)piperidin-4-ones. Chemical & Pharmaceutical Bulletin, 54, 795–801. DOI: 10.1248/cpb.54.795. http://dx.doi.org/10.1248/cpb.54.79510.1248/cpb.54.795Search in Google Scholar

[30] Srinivasan, M., Perumal, S., & Selvaraj, S. (2005). (L)-Proline catalysed efficient synthesis of 3-substituted 2,6-diarylpiperidin-4-ones. ARKIVOC, 2005(xi), 201–208. 10.3998/ark.5550190.0006.b17Search in Google Scholar

[31] Varma, R. S. (2002). Clay and clay-supported reagents in organic synthesis. Tetrahedron, 58, 1235–1255. DOI: 10.1016/S0040-4020(01)01216-9. http://dx.doi.org/10.1016/S0040-4020(01)01216-910.1016/S0040-4020(01)01216-9Search in Google Scholar

[32] Venkatesa Perumal, R., Adiraj, M., & Shanmuga Pandiyan, P. (2001). Synthesis, analgesic and anti inflammatory evaluation of substituted 4-piperidones. Indian Drugs, 38, 156–159. Search in Google Scholar

[33] Vijayalakshmi, R., Muthukumar, M., Ponnuswamy, S., & Jeyaraman, R. (2006). Competing A1,3 strain and Ph:Ph diaxial repulsion in oximes and semicarbazones of N-nitroso-r-2,c-6-diphenylpiperidin-4-ones. Indian Journal of Chemistry Section B, 45B, 2720–2735. Search in Google Scholar

[34] Weintraub, P. M., Sabol, J. S., Kane, J. M., & Borcherding, D. R. (2003). Recent advances in the synthesis of piperidones and piperidines. Tetrahedron, 59, 2953–2989. DOI: 10.1016/S0040-4020(03)00295-3. http://dx.doi.org/10.1016/S0040-4020(03)00295-310.1016/S0040-4020(03)00295-3Search in Google Scholar

[35] Zeng, H., Li, H., & Shao, H. (2009). One-pot three-component Mannich-type reactions using sulfamic acid catalyst under ultrasound irradiation. Ultrasonics Sonochemistry, 16, 758–762. DOI: 10.1016/j.ultsonch.2009.03.008. http://dx.doi.org/10.1016/j.ultsonch.2009.03.00810.1016/j.ultsonch.2009.03.008Search in Google Scholar PubMed

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0046-x/html?lang=en
Scroll to top button