Abstract
The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc melting or by induction melting in sealed niobium containers. They crystallize with the NdRh2Sn4 type structure, space group Pnma. The samples were characterized by powder X-ray diffraction (Guinier technique). Three structures were refined from single-crystal X-ray data: a=1844.5(2), b=450.33(4), c=716.90(6) pm, wR2=0.0323, 1172 F2 values, 44 variables for LaIr2Sn4, a=1840.08(2), b=448.24(4), c=719.6(1) pm, wR2=0.0215, 1265 F2 values, 45 variables for Ce1.13Ir2Sn3.87, and a=1880.7(1), b=446.2(1), c=733.0(1) pm, wR2=0.0845, 836 F2 values, 45 variables for Ce1.68Ir2Sn3.32. The structures consist of three-dimensional [Ir2Sn4] polyanionic networks in which the rare earth atoms fill pentagonal prismatic channels. The striking structural motif concerns the formation of solid solutions RE1+xIr2Sn4−x on the Sn4 sites, which have similar coordination as the RE sites. Temperature dependent magnetic susceptibility measurements revealed diamagnetic behavior for LaIr2Sn4. CeIr2Sn4, PrIr2Sn4 and NdIr2Sn4 show Curie-Weiss paramagnetism while SmIr2Sn4 exhibits typical van Vleck paramagnetism. Antiferromagnetic ground states were observed for CeIr2Sn4 (TN=3.3 K) and SmIr2Sn4 (TN=3.8 K). 119Sn Mössbauer spectra show a close superposition of four sub-spectra which can be distinguished through their isomer shift and the quadrupole splitting parameter.
Dedicated to:
Professor Werner Uhl on the occasion of his 65th birthday.
Acknowledgements
We thank Dr. Rolf-Dieter Hoffmann, Dipl.-Ing. U. Ch. Rodewald and Dipl.-Ing. Jutta Kösters for collecting the single-crystal intensity data.
References
[1] R. V. Skolozdra, Stannides of the rare-earth and transition metals, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24 (Eds.: K. A. Gschneidner, Jr., L. Eyring), Elsevier, Amsterdam, 1997, chapter 164.10.1016/S0168-1273(97)24009-2Suche in Google Scholar
[2] R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Suche in Google Scholar
[3] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Suche in Google Scholar
[4] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, Florida, 1994.Suche in Google Scholar
[5] R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Suche in Google Scholar
[6] R. Pöttgen, O. Janka, B. Chevalier, Z. Naturforsch. 2016, 71b, 165.10.1515/znb-2016-0013Suche in Google Scholar
[7] O. Janka, O. Niehaus, R. Pöttgen, B. Chevalier, Z. Naturforsch. 2016, 71b, 737.10.1515/znb-2016-0101Suche in Google Scholar
[8] O. Niehaus, G. Heymann, H. Huppertz, U. Ch. Rodewald, B. Chevalier, S. F. Matar, R.-D. Hoffmann, R. Pöttgen, Dalton Trans. 2016, 45, 14216.10.1039/C6DT02294DSuche in Google Scholar
[9] D. Laffargue, F. Bourée, B. Chevalier, J. Etourneau, T. Roisnel, Physica B1999, 259–261, 46.10.1016/S0921-4526(98)00734-0Suche in Google Scholar
[10] R. Pöttgen, R.-D. Hoffmann, E. V. Sampathkumaran, I. Das, B. D. Mosel, R. Müllmann, J. Solid State Chem. 1997, 134, 326.10.1006/jssc.1997.7565Suche in Google Scholar
[11] M. Sundermann, F. Strigari, T. Willers, H. Winkler, A. Prokofiev, J. M. Ablett, J.-P. Rueff, D. Schmitz, E. Weschke, M. Moretti Sala, A. Al-Zein, A. Tanaka, M. W. Haverkort, D. Kasinathan, L. H. Tjeng, S. Paschen, A. Severing, Sci. Rep. 2015, 5, 17937.10.1038/srep17937Suche in Google Scholar PubMed PubMed Central
[12] E. L. Thomas, H.-O. Lee, A. N. Bankston, S. MaQuilon, P. Klavins, M. Moldovan, D. P. Young, Z. Fisk, J. Y. Chan, J. Solid State Chem. 2006, 179, 1642.10.1016/j.jssc.2006.02.024Suche in Google Scholar
[13] A. Ślebarski, J. Goraus, Phys. Rev. B2013, 88, 155122.10.1103/PhysRevB.88.155122Suche in Google Scholar
[14] C. N. Kuo, W. T. Chen, C. W. Tseng, C. J. Hsu, R. Y. Huang, F. C. Chou, Y. K. Kuo, C. S. Lue, Phys. Rev. B2018, 97, 094101.10.1103/PhysRevB.97.094101Suche in Google Scholar
[15] P. Salamakha, O. Sologub, J. K. Yakinthos, Ch. D. Routsi, J. Alloys Compd. 1998, 265, L1.10.1016/S0925-8388(97)00427-1Suche in Google Scholar
[16] B. Chevalier, C. P. Sebastian, R. Pöttgen, Solid State Sci. 2006, 8, 1000.10.1016/j.solidstatesciences.2006.02.047Suche in Google Scholar
[17] M. Selsane, M. Lebail, N. Hamdaoui, J. P. Kappler, H. Noël, J. C. Achard, C. Godart, Physica B1990, 163, 213.10.1016/0921-4526(90)90171-PSuche in Google Scholar
[18] W. P. Beyermann, M. F. Hundley, P. C. Canfield, J. D. Thompson, M. Latroche, C. Godart, M. Selsane, Z. Fisk, J. L. Smith, Phys. Rev. B1991, 43, 13130.10.1103/PhysRevB.43.13130Suche in Google Scholar
[19] G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1989, 24, 1135.10.1016/0025-5408(89)90071-8Suche in Google Scholar
[20] N. G. Patil, S. Ramakrishnan, Phys. Rev. B1997, 56, 3360.10.1103/PhysRevB.56.3360Suche in Google Scholar
[21] S. Ramakrishnan, Curr. Sci. 2005, 88, 96.10.1002/bip.20241Suche in Google Scholar
[22] A. S. Cooper, Mater. Res. Bull. 1980, 15, 799.10.1016/0025-5408(80)90014-8Suche in Google Scholar
[23] D. Niepmann, R. Pöttgen, K. M. Poduska, F. J. DiSalvo, H. Trill, B. D. Mosel, Z. Naturforsch. 2001, 56b, 1.10.1515/znb-2001-0102Suche in Google Scholar
[24] C. Nagoshi, H. Sugawara, Y. Aoki, S. Sakai, M. Kohgi, H. Sato, T. Onimaru, T. Sakakibara, Physica B2005, 359–361, 248.10.1016/j.physb.2005.01.052Suche in Google Scholar
[25] C. P. Yang, Y. H. Chen, H. Wang, C. Nagoshi, M. Kohgi, H. Sato, Appl. Phys. Lett. 2008, 92, 092504.10.1063/1.2890716Suche in Google Scholar
[26] J. R. Collave, H. A. Borges, S. M. Ramos, E. N. Hering, M. B. Fontes, E. Baggio-Saitovitch, A. Eichler, E. M. Bittar, P. G. Pagliuso, Solid State Commun. 2014, 177, 132.10.1016/j.ssc.2013.10.015Suche in Google Scholar
[27] D. Niepmann, R. Pöttgen, B. Künnen, G. Kotzyba, C. Rosenhahn, B. D. Mosel, Chem. Mater. 1999, 11, 1597.10.1021/cm991006uSuche in Google Scholar
[28] D. Niepmann, Struktur-Eigenschaftsbeziehungen ternärer intermetallischer Cer-Übergangsmetall-Silicide, Germanide und Stannide, Dissertation, Universität Münster, Münster, 2000.Suche in Google Scholar
[29] M. Méot-Meyer, G. Venturini, B. Malaman, B. Roques, Mater. Res. Bull. 1985, 20, 913.10.1016/0025-5408(85)90074-1Suche in Google Scholar
[30] R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Suche in Google Scholar
[31] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem.1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar
[32] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar
[33] R. A. Brand, Normos, Mössbauer Fitting Program, University of Duisburg, Duisburg (Germany) 2002.Suche in Google Scholar
[34] G. M. Sheldrick, Acta Crystallogr.1990, A46, 467.10.1107/S0108767390000277Suche in Google Scholar
[35] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Suche in Google Scholar
[36] M. Gamża, W. Schnelle, R. Gumeniuk, Yu. Prots, A. Ślebarski, H. Rosner, Yu. Grin, J. Phys.: Condens. Matter2009, 21, 325601.10.1088/0953-8984/21/32/325601Suche in Google Scholar
[37] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
[38] V. Smetana, G. J. Miller, J. D. Corbett, Inorg. Chem. 2013, 52, 12502.10.1021/ic401580ySuche in Google Scholar
[39] S. N. Nesterenko, A. I. Tursina, A. V. Gribanov, Y. D. Seropegin, J. M. Kurenbaeva, J. Alloys Compd. 2004, 383, 242.10.1016/j.jallcom.2004.04.026Suche in Google Scholar
[40] J. R. Salvador, K. Hoang, S. D. Mahanti, M. G. Kanatzidis, Inorg. Chem. 2007, 46, 6933.10.1021/ic700633bSuche in Google Scholar
[41] S. Sarkar, M. J. Gutmann, S. C. Peter, Cryst. Growth Des. 2013, 13, 4285.10.1021/cg400619pSuche in Google Scholar
[42] D. Voßwinkel, S. F. Matar, R. Pöttgen, Monatsh. Chem. 2015, 146, 1375.10.1007/s00706-015-1525-5Suche in Google Scholar
[43] R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.10.1524/9783486856187Suche in Google Scholar
[44] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Suche in Google Scholar
[45] R.-D. Hoffmann, D. Kußmann, U. Ch. Rodewald, R. Pöttgen, C. Rosenhahn, B. D. Mosel, Z. Naturforsch. 1999, 54b, 709.10.1515/znb-1999-0602Suche in Google Scholar
[46] Zh. Wu, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2002, 628, 1484.10.1002/1521-3749(200207)628:7<1484::AID-ZAAC1484>3.0.CO;2-#Suche in Google Scholar
[47] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Suche in Google Scholar
[48] I. Todorov, S. C. Sevov, Inorg. Chem. 2005, 44, 5361.10.1021/ic050803tSuche in Google Scholar
[49] H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
[50] R. Pöttgen, H. Borrmann, R. K. Kremer, J. Magn. Magn. Mater. 1996, 152, 196.10.1016/0304-8853(95)00430-0Suche in Google Scholar
[51] J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Clarendon Press, Oxford, 1932.Suche in Google Scholar
[52] A. M. Stewart, Phys. Rev. B1972, 6, 1985.10.1103/PhysRevB.6.1985Suche in Google Scholar
[53] H. C. Hamaker, L. D. Woolf, H. B. MacKay, Z. Fisk, M. B. Maple, Solid State Commun.1979, 32, 289.10.1016/0038-1098(79)90949-9Suche in Google Scholar
[54] A. M. Stewart, Phys. Rev. B1993, 47, 11242.10.1103/PhysRevB.47.11242Suche in Google Scholar
[55] S. Seidel, O. Niehaus, S. F. Matar, O. Janka, B. Gerke, U. C. Rodewald, R. Pöttgen, Z. Naturforsch.2014, 69b, 1105.10.5560/znb.2014-4119Suche in Google Scholar
[56] B. Heying, J. Kösters, R.-D. Hoffmann, L. Heletta, R. Pöttgen, Z. Naturforsch. 2017, 72b, 753.10.1515/znb-2017-0127Suche in Google Scholar
[57] P. E. Lippens, Phys. Rev. B1999, 60, 4576.10.1103/PhysRevB.60.4576Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]