Abstract
A label for amino and thiol functionalities of peptides and proteins based on the activated cobaltocinium hexafluorophosphate succinimide ester (CoS) is presented. Despite the known selectivity of a succinimide ester towards amines, CoS also modifies cysteine residues under the same reaction conditions. The derivatized biomolecules were investigated using liquid chromatography with subsequent electrospray-mass spectrometric detection (LC/ESI-MS). In combination with their remarkable stability under physiological conditions, easy handling and good spectroscopic properties, cobaltocinium ions provide all requirements for a powerful labeling reagent. Furthermore, in direct comparison to the isoelectronic well-established ferrocene reagents, the higher redox potential and the chemical stability of the cobaltocinium moiety add to the benefits as a derivatizing agent for bioanalysis.
Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.
Acknowledgement
Financial support by the Fonds der Chemischen Industrie (Frankfurt/Main, Germany) is gratefully acknowledged.
References
[1] A. Leitner, W. Lindner, Current chemical tagging strategies for proteome analysis by mass spectrometry, J. Chromatogr. B2004, 813, 1.10.1016/j.jchromb.2004.09.057Suche in Google Scholar
[2] A. Tholey, D. Schaumlöffel, Metal labelling for quantitative protein and proteome analysis using inductively coupled plasma mass spectrometry, Trends Anal. Chem.2010, 29, 399.10.1016/j.trac.2010.01.010Suche in Google Scholar
[3] D. Kretschy, G. Koellensperger, S. Hann, Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: a review, Anal. Chim. Acta2012, 750, 98.10.1016/j.aca.2012.06.040Suche in Google Scholar
[4] B. Campanella, E. Bramanti, Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labeling, Analyst2014, 139, 4124.10.1039/C4AN00722KSuche in Google Scholar
[5] Z. R. Liu, X. T. Li, G. Y. Xiao, B. B. Chen, M. He, B. Hu, Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags, a review, Trends Anal. Chem.2017, 93, 78.10.1016/j.trac.2017.05.008Suche in Google Scholar
[6] M. Salmain, G. Jaouen, Side-chain selective and covalent labelling of proteins with transition organometallic complexes. Perspectives in biology, C. R. Chimie2003, 6, 249.10.1016/S1631-0748(03)00023-7Suche in Google Scholar
[7] H. E. Amouri, Y. Besace, J. Vaissermann, G. Jaouen, Synthesis, reactivity and X-ray molecule structure of the activated ester complex [(η5-C5H4COONS)Co(CO)2] (NS=N-succinimidyl), J. Organomet. Chem.1996, 515, 103.10.1016/0022-328X(95)06058-5Suche in Google Scholar
[8] D. Pröfrock, A. Prange, Chemical labels and natural element tags for the quantitative analysis of bio-molecules, J. Anal. At. Spectrom.2008, 23, 432.10.1039/b717916mSuche in Google Scholar
[9] S. Bomke, M. Sperling, U. Karst, Organometallic derivatizing agents in bioanalysis, Anal. Bioanal. Chem.2010, 397, 3483.10.1007/s00216-010-3611-1Suche in Google Scholar PubMed
[10] G. Schwarz, L. Mueller, S. Beck, M. W. Linscheid, DOTA based metal labels for protein quantification: a review, J. Anal. At. Spectrom.2014, 29, 221.10.1039/C3JA50277ESuche in Google Scholar
[11] T. C. de Bang, S. Husted, Lanthanide elements as labels for multiplexed and targeted analysis of proteins, DNA and RNA using inductively-coupled plasma mass spectrometry, Trends Anal. Chem.2015, 72, 45.10.1016/j.trac.2015.03.021Suche in Google Scholar
[12] Y. Liang, L. M. Yang, Q. Wang, An ongoing path of element-labelling/tagging strategies towards quantitative bioanalysis using ICP-MS, Appl. Spectrosc. Rev.2015, 51, 117.10.1080/05704928.2015.1105244Suche in Google Scholar
[13] J. E. Sheats, M. Rausch, Synthesis and properties of cobalticinium salts. I. Synthesis of monosubstituted cobalticinium salt, J. Org. Chem.1970, 35, 3245.10.1021/jo00835a014Suche in Google Scholar
[14] E. O. Fischer, G. E. Herberich, Über die Reaktivität des Di-cyclopentadienyl-kobalt(III)-Kations, Chem. Ber.1961, 94, 1517.10.1002/cber.19610940615Suche in Google Scholar
[15] T. J. Gill, L. T. Mann, Studies of synthetic polypeptide antigens, J. Immun.1966, 5, 906.10.4049/jimmunol.96.5.906Suche in Google Scholar
[16] F. Noor, A. Wüstholz, R. Kinscherf, N. Metzler-Nolte, A cobaltocenium-peptide bioconjugate shows enhanced cellular uptake and directed nuclear delivery, Angew. Chem. Int. Ed.2005, 44, 2429.10.1002/anie.200462519Suche in Google Scholar
[17] J. T. Chantson, M. V. V. Falzacappa, S. Crovella, N. Metzler-Nolte, Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates, Chem. Med. Chem.2006, 1, 1268.10.1002/cmdc.200600117Suche in Google Scholar
[18] J. T. Chantson, M. V. V. Falzacappa, S. Crovella, N. Metzler-Nolte, Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates, J. Org. Chem.2005, 690, 4564.10.1016/j.jorganchem.2005.07.007Suche in Google Scholar
[19] I. Lavastre, J. Bescancon, P. Brossiert, C. Moise, The use of metallocenic esters of N-hydroxysuccinimide for metallohapten synthesis, Appl. Organom. Chem.1991, 5, 143.10.1002/aoc.590050302Suche in Google Scholar
[20] A. L. Bordes, B. Limoges, P. Brossier, C. Degrand, Simultaneous homogenous immunoassay of phenytoin and phenobarbital using a Nafion-loaded carbon paste electrode and two redox cationic labels, Anal. Chim. Acta1997, 356, 195.10.1016/S0003-2670(97)00557-6Suche in Google Scholar
[21] D. R. van Staveren, T. Weyhermüller, N. Metzler-Nolte, Organometallic β-turn mimetics. A structural and spectroscopic study of inter-stand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides, Dalton Trans.2003, 210.10.1039/b208363aSuche in Google Scholar
[22] A. Maurer, H.-B. Kraatz, N. Metzler-Nolte, Synthesis and electrochemical characterization of metallocene-PNA oligomers, Eur. J. Inorg. Chem.2005, 16, 3207.10.1002/ejic.200500316Suche in Google Scholar
[23] P. D. Beer, C. Hazlewood, D. Hesek, J. Hodacova, S. E. Stokes, Anion recognition by acyclic redox-responsive amide-linked cobaltocenium receptors, J. Chem. Soc. Dalton Trans.1993, 8, 1327.10.1039/dt9930001327Suche in Google Scholar
[24] P. D. Beer, S. E. Stokes, Anion recognition by amide-linked pyridyl and pyridinium substituted cobaltocinium receptors, Polyhedron1995, 7, 873.10.1016/0277-5387(94)00325-9Suche in Google Scholar
[25] S. Wiese, T. Gronemeyer, R. Ofman, M. Kunze, C. P. Grou, J. A. Almeida, M. Eisenacher, C. Stephan, H. Hayen, M. Pawlas, C. Bunse, L. Schollenberger, T. Korosec, H. R. Waterham, W. Schliebs, R. Erdmann, J. Berger, H. E. Meyer, W. Just, J. E. Azevedo, R. J. A. Wanders, B. Warscheid, Proteomic characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling, Mol. Cell. Proteomics2007, 6, 2045.10.1074/mcp.M700169-MCP200Suche in Google Scholar PubMed
[26] M. Brinkley, A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents, Bioconjugate Chem.1992, 3, 2.10.1021/bc00013a001Suche in Google Scholar PubMed
[27] T. Pfeifer, R. Janzen, T. Steingrobe, M. Sperling, C. Engelhard, W. Buscher, Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques, Spectrochim. Acta, Part B2012, 76, 48.10.1016/j.sab.2012.06.053Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]