Abstract
The first mixed germanato-antimonato derivative of the {V14E8O42} (E=semi-metal) cluster archetype has been synthesized under hydrothermal conditions and isolated as {Ni(phen)3}2[α-VIV14SbIII5GeIV3O42(OH)3(H2O)]· ≈16H2O (phen=1,10-phenanthroline). In the cluster anion, seven of the eight hetero-metal positions are occupied by disordered Ge/Sb atoms, while one position is fully occupied by Sb atoms. The [V14Sb5Ge3O42(OH)3(H2O)]6− anions are arranged in pairs with remarkably short inter-cluster Sb···O contacts. Bond valence sum calculation strongly suggests that the Sb···O contact must be taken into account as a weak bond. The magnetic properties are dominated by strong intra-cluster antiferromagnetic exchange interactions, and the cluster anion is magnetically quasi-isolated from the spins of the Ni2+ complex cations.
Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.
References
[1] K. Yu. Monakhov, W. Bensch, P. Kögerler, Chem. Soc. Rev.2015, 44, 8443.10.1039/C5CS00531KSuche in Google Scholar
[2] A. Müller, J. Döring, Z. Anorg. Allg. Chem.1991, 595, 251.10.1002/zaac.19915950124Suche in Google Scholar
[3] G. Huan, M. A. Greaney, A. J. Jacobson, Chem. Commun.1991, 260.10.1039/c39910000260Suche in Google Scholar
[4] M. I. Khan, Q. Chen, J. Zubieta, Inorg. Chim. Acta1993, 212, 199.10.1016/S0020-1693(00)92326-0Suche in Google Scholar
[5] S.-T. Zheng, J.-Q. Xu, G.-Y. Yang, J. Cluster Sci.2005, 16, 23.10.1007/s10876-005-2713-ySuche in Google Scholar
[6] Y.-F. Qi, Y. Li, E. Wang, D. Xiao, J. Hua, J. Coord. Chem.2007, 60, 1403.10.1080/00958970601026897Suche in Google Scholar
[7] L. Zhang, X. Zhao, J. Xu, T. Wang, J. Chem. Soc. Dalton Trans.2002, 3275.10.1039/B206250JSuche in Google Scholar
[8] R. Kiebach, C. Näther, W. Bensch, Solid State Sci.2006, 8, 964.10.1016/j.solidstatesciences.2006.02.046Suche in Google Scholar
[9] R. Kiebach, C. Näther, P. Kögerler, W. Bensch, Dalton Trans.2007, 3221.10.1039/b708744fSuche in Google Scholar PubMed
[10] A. Wutkowski, C. Näther, P. Kögerler, W. Bensch, Inorg. Chem.2008, 47, 1916.Suche in Google Scholar
[11] E. Antonova, C. Näther, P. Kögerler, W. Bensch, Angew. Chem. Int. Ed.2011, 50, 764.10.1002/anie.201002563Suche in Google Scholar PubMed
[12] Y. Gao, Z. Han, Y. Xu, C. Hu, J. Cluster Sci.2010, 21, 163.10.1007/s10876-010-0309-7Suche in Google Scholar
[13] E. Antonova, C. Näther, P. Kögerler, W. Bensch, Dalton Trans.2012, 41, 6957.10.1039/c2dt30319aSuche in Google Scholar PubMed
[14] E. Antonova, C. Näther, W. Bensch, CrystEngComm2012, 14, 6853.10.1039/c2ce25896jSuche in Google Scholar
[15] E. Antonova, A. Wutkowski, C. Näther, W. Bensch, Solid State Sci.2011, 13, 2154.10.1016/j.solidstatesciences.2011.09.012Suche in Google Scholar
[16] E. Antonova, C. Näther, P. Kögerler, W. Bensch, Inorg. Chem.2012, 51, 2311.10.1021/ic2023117Suche in Google Scholar PubMed
[17] H. Lühmann, C. Näther, P. Kögerler, W. Bensch, Inorg. Chim. Acta2014, 421, 549.10.1016/j.ica.2014.07.028Suche in Google Scholar
[18] E. Antonova, C. Näther, W. Bensch, Dalton Trans.2012, 41, 1338.10.1039/C1DT11635ESuche in Google Scholar PubMed
[19] A. Wutkowski, C. Näther, P. Kögerler, W. Bensch, Inorg. Chem.2013, 52, 3280.10.1021/ic302788wSuche in Google Scholar PubMed
[20] M. Rasmussen, C. Näther, J. van Leusen, P. Kögerler, L. Zhechkov, T. Heine, W. Bensch, Inorg. Chem.2017, 56, 7120.10.1021/acs.inorgchem.7b00724Suche in Google Scholar PubMed PubMed Central
[21] M. Wendt, U. Warzok, C. Näther, J. van Leusen, P. Kögerler, C. A. Schalley, W. Bensch, Chem. Sci.2016, 7, 2684.10.1039/C5SC04571ASuche in Google Scholar PubMed PubMed Central
[22] L. K. Mahnke, U. Warzok, M. Lin, C. Näther, C. A. Schalley, W. Bensch, Chem. Eur. J.2018, 24, 5522.10.1002/chem.201705732Suche in Google Scholar PubMed
[23] M. Wendt, L. K. Mahnke, N. Heidenreich, W. Bensch, Eur. J. Inorg. Chem.2016, 5393.10.1002/ejic.201601025Suche in Google Scholar
[24] H.-Y. Guo, X. Zhang, X.-B. Cui, Q.-S. Huo, J.-Q. Xu, CrystEngComm2016, 18, 5130.10.1039/C6CE00616GSuche in Google Scholar
[25] H.-Y. Guo, X. Zhang, L.-N. Xiao, X.-B. Cui, Dalton Trans.2017, 46, 8022.10.1039/C7DT01229BSuche in Google Scholar PubMed
[26] T. Whitfield, X. Wang, A. J. Jacobson, Inorg. Chem.2003, 42, 3728.10.1021/ic0206185Suche in Google Scholar PubMed
[27] M. Wendt, L. K. Mahnke, C. Näther, J. van Leusen, P. Kögerler, W. Bensch, Dalton Trans.2018, 47, 6672.10.1039/C8DT00715BSuche in Google Scholar PubMed
[28] J. Xiang, J. He, Y. Yin, D. Li, Inorg. Chem. Comm.2006, 9, 326.10.1016/j.inoche.2005.12.007Suche in Google Scholar
[29] G. M. Sheldrick, Acta Crystallogr. A2015, 71, 3.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
[30] G. M. Sheldrick, Acta Crystallogr. C2015, 71, 3.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central
[31] A. L. Spek, Acta Crystallogr. C2015, 71, 9.10.1107/S2053229614024929Suche in Google Scholar PubMed
[32] E. Antonova, B. Seidlhofer, J. Wang, M. Hinz, W. Bensch, Chem. Eur. J.2012, 18, 5322.10.1002/chem.201202107Suche in Google Scholar
[33] L. Suescun, A. W. Mombru, R. A. Mariezcurrena, Acta Crystallogr. C1999, C55, 1991.10.1107/S0108270199011312Suche in Google Scholar
[34] M. Tabatabaee, N. Zajia, M. Parvez, Acta Crystallogr.2011, E67, m1794.10.1107/S160053681104880XSuche in Google Scholar
[35] T. J. Prior, A. Rujiwatra, Y. Chimupala, Crystals2011, 1, 178.10.3390/cryst1030178Suche in Google Scholar
[36] S. Decurtins, H. W. Schmalle, R. Pellaux, P. Schneuwly, A. Hauser, Inorg. Chem.1996, 35, 1451.10.1021/ic950791jSuche in Google Scholar PubMed
[37] J. Hilbert, C. Näther, W. Bensch, Inorg. Chem.2015, 53, 5619.10.1021/ic500369mSuche in Google Scholar PubMed
[38] S. Grimme, Angew. Chem. Int. Ed.2008, 47, 3430.10.1002/anie.200705157Suche in Google Scholar PubMed
[39] J. W. G. Bloom S. W. Wheeler, Angew. Chem. Int. Ed.2011, 50, 7847.10.1002/anie.201102982Suche in Google Scholar PubMed
[40] M. O’Keeffe, N. E. Brese, J. Am. Chem. Soc.1991, 113, 3226.10.1021/ja00009a002Suche in Google Scholar
[41] I. D. Brown, IUCrJ2017, 4, 514.10.1107/S2052252517011782Suche in Google Scholar PubMed PubMed Central
[42] V. Sidey, Acta Crystallogr.2010, B66, 307.10.1107/S010876811000892XSuche in Google Scholar PubMed
[43] O. C. Gagne, F. C. Hawthorne, Acta Crystallogr.2015, B71, 562.10.1107/S2052520615016297Suche in Google Scholar
[44] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr.2009, 42, 339.10.1107/S0021889808042726Suche in Google Scholar
[45] L. Yu, J.-P. Liu, J.-P. Wang, J.-Y. Niu, Chem. Res. Chin. Univ.2009, 25, 426.Suche in Google Scholar
[46] R. D. Shannon, Acta Crystallogr.1976, A32, 751.10.1107/S0567739476001551Suche in Google Scholar
[47] A. Bondi, J. Phys. Chem.1964, 68, 441.10.1021/j100785a001Suche in Google Scholar
[48] S. S. Batsanov, Inorg. Mater.2001, 37, 871.10.1023/A:1011625728803Suche in Google Scholar
[49] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A2009, 113, 5806.10.1021/jp8111556Suche in Google Scholar PubMed PubMed Central
[50] S. Alvarez, Dalton Trans.2013, 42, 8617.10.1039/c3dt50599eSuche in Google Scholar PubMed
[51] E. König, K. Madeja, Inorg. Chem.1968, 7, 1848.10.1021/ic50067a030Suche in Google Scholar
[52] T. P. Gerasimova, S. A. Katsyuba, Dalton Trans.2013, 42, 1787.10.1039/C2DT31922ESuche in Google Scholar
[53] D. A. Thornton, G. M. Watkins, J. Coord. Chem.1992, 25, 299.10.1080/00958979209409204Suche in Google Scholar
[54] S. S. Singh, Z. Naturforsch.1969, 24a, 2015.10.1515/zna-1969-1227Suche in Google Scholar
[55] H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
[56] M. Wendt, P. Polzin, J. van Leusen, C. Näther, P. Kögerler, W. Bensch, Dalton Trans.2017, 46, 1618.10.1039/C6DT04412CSuche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0092).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Preface
- Congratulations to Bernt Krebs
- Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
- Cationic tri(ferrocenecarbonitrile)silver(I)
- Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
- Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
- Biolabeling with cobaltocinium tags
- Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
- Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
- 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
- Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
- A new stacking variant of Na2Pt(OH)6
- Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
- Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
- Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
- Preface
- Congratulations to Werner Uhl
- The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
- 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
- Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
- A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
- (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
- Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
- Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
- Note
- Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]