Startseite Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation

  • Yan Zhang , Yinping Liu EMAIL logo und Xiaoyan Tang
Veröffentlicht/Copyright: 16. März 2017

Abstract:

In this article, a generalized Darboux transformation for the fourth-order nonlinear Schrödinger equation is constructed in terms of Darboux matrix method. Subsequently, breathers and the Nth-order rogue wave solutions of this equation are explicitly given in the light of the obtained Darboux transformation. Finally, we concretely discuss the dynamics of the obtained rogue waves, which are also demonstrated by some figures.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11435005, 11475052 and 11275123), Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF1213).

References

[1] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).10.1038/nphys1740Suche in Google Scholar

[2] H. L. Zhen, B. Tian, Y. F. Wang, and D. Y. Liu, Phys. Plasmas 22, 2676 (2015).10.1063/1.4913668Suche in Google Scholar

[3] W. R. Sun, B. Tian, Y. Jiang, and H. L. Zhen, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91, 023205 (2015).10.1103/PhysRevE.91.023205Suche in Google Scholar

[4] R. Bharuthram and P. K. Shukla, Planet. Space Sci. 40, 973 (1992).10.1016/0032-0633(92)90137-DSuche in Google Scholar

[5] X. Y. Xie, B. Tian, W. R. Sun, and Y. Sun, Nonlinear Dyn. 81, 1349 (2015).10.1007/s11071-015-2073-6Suche in Google Scholar

[6] H. L. Zhen, B. Tian, Y. Sun, J. Chai, and X. Y. Wen, Phys. Plasmas 22, 2676 (2015).10.1063/1.4932076Suche in Google Scholar

[7] W. R. Sun, B. Tian, H. L. Zhen, and Y. Sun, Nonlinear Dyn. 81, 725 (2015).10.1007/s11071-015-2022-4Suche in Google Scholar

[8] Y. Zhang, X. J. Nie, and Zhaqilao, Phys. Lett. A 378, 191 (2014).10.1016/j.physleta.2013.11.010Suche in Google Scholar

[9] Y. Zhang, X. J. Nie, and Zhaqilao, Chin. Phys. Lett. 31, 1 (2014).10.1088/0256-307X/31/6/060201Suche in Google Scholar

[10] B. Yang, W. G. Zhang, H. Q. Zhang, and S. B. Pei, Phys. Scr. 88, 065004 (2013).10.1088/0031-8949/88/06/065004Suche in Google Scholar

[11] M. Daniel, L. Kavitha, and R. Amuda, Phys. Rev. B, 59, 13774 (1999).10.1103/PhysRevB.59.13774Suche in Google Scholar

[12] M. Daniel and M. M. Latha, Phys. A Stat. Mech. Appl. 240, 526 (1997).10.1016/S0378-4371(97)00041-1Suche in Google Scholar

[13] M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988).10.1016/0375-9601(88)90520-8Suche in Google Scholar

[14] K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys. 33, 1807 (1992).10.1063/1.529658Suche in Google Scholar

[15] B. L. Guo, M. Zeng, and F. Q. Su, J. Math. Anal. Appl. 330, 729 (2007).10.1016/j.jmaa.2006.08.010Suche in Google Scholar

[16] R. X. Liu, B. Tian, L. C. Liu, B. Qin, and L. Xing, Phys. B Condensed Matter 413, 120 (2013).10.1016/j.physb.2012.12.044Suche in Google Scholar

[17] S. S. Veni and M. M. Latha, Phys. A Stat. Mech. Appl. 407, 76 (2014).10.1016/j.physa.2014.03.087Suche in Google Scholar

[18] R. X. Liu, B. Tian, Y. Jiang, and P. Wang, Commun. Nonlinear Sci. Numer. Simul. 19, 520 (2014).10.1016/j.cnsns.2013.05.014Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zna-2016-0438) offers supplementary material, available to authorized users.


Received: 2016-11-14
Accepted: 2017-1-6
Published Online: 2017-3-16
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0438/html?lang=de
Button zum nach oben scrollen