Home Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
Article
Licensed
Unlicensed Requires Authentication

Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation

  • Yan Zhang , Yinping Liu EMAIL logo and Xiaoyan Tang
Published/Copyright: March 16, 2017

Abstract:

In this article, a generalized Darboux transformation for the fourth-order nonlinear Schrödinger equation is constructed in terms of Darboux matrix method. Subsequently, breathers and the Nth-order rogue wave solutions of this equation are explicitly given in the light of the obtained Darboux transformation. Finally, we concretely discuss the dynamics of the obtained rogue waves, which are also demonstrated by some figures.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 11435005, 11475052 and 11275123), Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF1213).

References

[1] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).10.1038/nphys1740Search in Google Scholar

[2] H. L. Zhen, B. Tian, Y. F. Wang, and D. Y. Liu, Phys. Plasmas 22, 2676 (2015).10.1063/1.4913668Search in Google Scholar

[3] W. R. Sun, B. Tian, Y. Jiang, and H. L. Zhen, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91, 023205 (2015).10.1103/PhysRevE.91.023205Search in Google Scholar

[4] R. Bharuthram and P. K. Shukla, Planet. Space Sci. 40, 973 (1992).10.1016/0032-0633(92)90137-DSearch in Google Scholar

[5] X. Y. Xie, B. Tian, W. R. Sun, and Y. Sun, Nonlinear Dyn. 81, 1349 (2015).10.1007/s11071-015-2073-6Search in Google Scholar

[6] H. L. Zhen, B. Tian, Y. Sun, J. Chai, and X. Y. Wen, Phys. Plasmas 22, 2676 (2015).10.1063/1.4932076Search in Google Scholar

[7] W. R. Sun, B. Tian, H. L. Zhen, and Y. Sun, Nonlinear Dyn. 81, 725 (2015).10.1007/s11071-015-2022-4Search in Google Scholar

[8] Y. Zhang, X. J. Nie, and Zhaqilao, Phys. Lett. A 378, 191 (2014).10.1016/j.physleta.2013.11.010Search in Google Scholar

[9] Y. Zhang, X. J. Nie, and Zhaqilao, Chin. Phys. Lett. 31, 1 (2014).10.1088/0256-307X/31/6/060201Search in Google Scholar

[10] B. Yang, W. G. Zhang, H. Q. Zhang, and S. B. Pei, Phys. Scr. 88, 065004 (2013).10.1088/0031-8949/88/06/065004Search in Google Scholar

[11] M. Daniel, L. Kavitha, and R. Amuda, Phys. Rev. B, 59, 13774 (1999).10.1103/PhysRevB.59.13774Search in Google Scholar

[12] M. Daniel and M. M. Latha, Phys. A Stat. Mech. Appl. 240, 526 (1997).10.1016/S0378-4371(97)00041-1Search in Google Scholar

[13] M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988).10.1016/0375-9601(88)90520-8Search in Google Scholar

[14] K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys. 33, 1807 (1992).10.1063/1.529658Search in Google Scholar

[15] B. L. Guo, M. Zeng, and F. Q. Su, J. Math. Anal. Appl. 330, 729 (2007).10.1016/j.jmaa.2006.08.010Search in Google Scholar

[16] R. X. Liu, B. Tian, L. C. Liu, B. Qin, and L. Xing, Phys. B Condensed Matter 413, 120 (2013).10.1016/j.physb.2012.12.044Search in Google Scholar

[17] S. S. Veni and M. M. Latha, Phys. A Stat. Mech. Appl. 407, 76 (2014).10.1016/j.physa.2014.03.087Search in Google Scholar

[18] R. X. Liu, B. Tian, Y. Jiang, and P. Wang, Commun. Nonlinear Sci. Numer. Simul. 19, 520 (2014).10.1016/j.cnsns.2013.05.014Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/zna-2016-0438) offers supplementary material, available to authorized users.


Received: 2016-11-14
Accepted: 2017-1-6
Published Online: 2017-3-16
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0438/html
Scroll to top button