Abstract
Tungsten sulfide (WS2) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS2 (Ag-WS2) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS2 has a graphene-like structure with P63/mmc space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS2 and Ag-WS2 nanomaterials. The sensing responses of WS2 and Ag-WS2 on the ammonia (NH3), ethanol (C2H5OH), and acetone (C3H6O) were investigated at about 220°C. The results indicate that gas sensor based on WS2 and Ag-WS2 nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS2 and Ag-WS2 gas sensors is surface control via charge transfer.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant no. 51574054), the Program for Innovation Team Building at Institutions of Higher Education in Chongqing (Grant no. CXTDX201601030), and the Postgraduate Research Innovation Project of Chongqing (Grant nos. CYS15219, CYS16215).
References
[1] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, Sensors 10, 5469 (2010).10.3390/s100605469Suche in Google Scholar PubMed PubMed Central
[2] E. Brunet, T. Maier, G. C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, and W. Grogger, Sens. Actuators B 165, 110 (2012).10.1016/j.snb.2012.02.025Suche in Google Scholar
[3] Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotech. 19, 095508 (2008).10.1088/0957-4484/19/9/095508Suche in Google Scholar PubMed
[4] S. Yi, S. Tian, D. Zeng, K. Xu, S. Zhang, and C. Xie, Sens. Actuators B 185, 345 (2013).10.1016/j.snb.2013.05.007Suche in Google Scholar
[5] B. J. Kim, I. G. Song, and J. S. Kim, Electron Mater. Lett. 10, 509 (2014).10.1007/s13391-013-3133-zSuche in Google Scholar
[6] M. Righettoni, A. Tricoli, and S. E. Pratsinis, Anal. Chem. 82, 3581 (2010).10.1021/ac902695nSuche in Google Scholar PubMed
[7] Q. Jia, H. Ji, P. Gao, H. M. Ji, and Z. G. Jin, J. Mater. Sci.: Mater. El. 26,5792 (2015).10.1007/s10854-015-3138-5Suche in Google Scholar
[8] J. M. Smulko, M. Trawka, C. G. Granqvist, R. Ionescu, F. Annanouch, E. Llobet, and L. B. Kish, Sens. Rev. 35, 340 (2015).10.1108/SR-12-2014-0747Suche in Google Scholar
[9] S. K. Lee, D. Chang, and S. W. Kim, J. Hazard Mater. 268, 110 (2014).10.1016/j.jhazmat.2013.12.049Suche in Google Scholar PubMed
[10] S. Sharma, S. Hussain, S. Singh, and S. Islam, Sens. Actuators B 194, 213 (2014).10.1016/j.snb.2013.12.050Suche in Google Scholar
[11] C. M. Viegas, Â. Zanatta, M. Grings, F. Hickmann, W. Monteiro, L. Soares, Â. Sitta, G. Leipnitz, F. Oliveira, and M. Wajner, Free Radic. Res. 48, 659 (2014).10.3109/10715762.2014.898842Suche in Google Scholar PubMed
[12] C. H. Cheng, F. F. Yang, R. Z. Ling, S. A. Liao, Y. T. Miao, C. X. Ye, and A. L. Wang, Aquat. Toxicol. 164, 61 (2015).10.1016/j.aquatox.2015.04.004Suche in Google Scholar PubMed
[13] S. N. Irving and L. Richard, Dangerous Properties of Industrial Materials, Amsterdam: Editorial Van Nostran Reinhols, 1989.Suche in Google Scholar
[14] M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Kamran, A. Majid, T. Alharbi, and J. Eom, RSC Adv. 6, 24675 (2016).10.1039/C6RA02390HSuche in Google Scholar
[15] G. V. Bianco, M. Losurdo, M. M. Giangregorio, A. Sacchetti, P. Prete, N. Lovergine, P. Capezzuto, and G. Bruno, RSC Adv. 5, 98700 (2015).10.1039/C5RA19698ASuche in Google Scholar
[16] D. Raichman, R. B. S. Binyamini, and J. P. Lellouche, RSC Adv. 6, 4490 (2016).10.1039/C5RA21370CSuche in Google Scholar
[17] X. Quan, X. Gao, L. Weng, M. Hu, D. Jiang, D. Wang, J. Sun, and W. Liu, RSC Adv. 5, 64892 (2015).10.1039/C5RA10009GSuche in Google Scholar
[18] Y. Zhu, X. Zhang, Y. Ji, Y. Feng, and J. Zhang, J. Nanosci. Nanotech. 13, 1983 (2013).10.1166/jnn.2013.7139Suche in Google Scholar PubMed
[19] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nat. Mater. 12, 850 (2013).10.1038/nmat3700Suche in Google Scholar PubMed
[20] X. Yang, V. Salles, Y. V. Kaneti, M. Liu, M. Maillard, C. Jounmet, X. Jiang, and A. Brioude, Sens. Actuators B 220, 1112 (2015).10.1016/j.snb.2015.05.121Suche in Google Scholar
[21] S. W. Choi, A. Katoch, J. Zhang, and S. S. Kim, Sens. Actuators B 176, 585 (2013).10.1016/j.snb.2012.09.035Suche in Google Scholar
[22] P. S. Khiabani, A. Hosseinmardi, E. Marzbanrad, S. Ghashghaie, C. Zamani, M. Keyanpour-Rad, and B. Raissi, Sens. Actuators B 162, 102 (2012).10.1016/j.snb.2011.12.043Suche in Google Scholar
[23] R. Murugan, V. J. Babu, Mya Mya Khin, A. S. Nair, and S. Ramakrishna, Mater. Lett. 97, 47 (2013).10.1016/j.matlet.2013.01.072Suche in Google Scholar
[24] C. Zhao, B. Huang, E. Xie, J. Zhou, and Z. Zhang, Sens. Actuators B 207, 313 (2015).10.1016/j.snb.2014.10.087Suche in Google Scholar
[25] A. Baranowska-Korczyc, K. Sobczak, P. Dłużewski, A. Reszka, B. J. Kowalski, Ł. Kłopotowski, D. Elbauma, and K. Fronca, Phys. Chem. Chem. Phys. 17, 24029 (2015).10.1039/C5CP02278ASuche in Google Scholar
[26] T. Ishihara, K. Kometani, Y. Nishi, and Y. Takita, Sens. Actuators B 28, 49 (1995).10.1016/0925-4005(94)01539-TSuche in Google Scholar
[27] S. Zhou, J. Chen, L. Gan, Q. Zhang, Z. Zheng, and H. Li, Sci. Bull. 61, 227 (2016).10.1007/s11434-015-0992-8Suche in Google Scholar
[28] Y. Wang, X. Cui, Q. Yang, J. Liu, Y. Gao, P. Sun, and G. Lu. Sens. Actuators B 225, 544 (2015).10.1016/j.snb.2015.11.065Suche in Google Scholar
[29] S. Sun, W. Wang, S. Zeng, M. Shang, and L. Zhang, J. Hazard. Mater. 178, 427 (2010).10.1016/j.jhazmat.2010.01.098Suche in Google Scholar PubMed
[30] Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, J. Zheng, L. T. Kong, and J. H. Liu, Sensors 12, 2610 (2012).10.3390/s120302610Suche in Google Scholar PubMed PubMed Central
[31] P. Rai, S. Raj, K. J. Ko, K. K. Park, and Y. T. Yu, Sens. Actuators B 178, 107 (2013).10.1016/j.snb.2012.12.031Suche in Google Scholar
[32] A. S. M. I. Uddin, D. T. Phan, and G. S. Chung, Sens. Actuators B 207, 362 (2015).10.1016/j.snb.2014.10.091Suche in Google Scholar
[33] J. Ma, Y. Liu, H. Zhang, P. Ai, N. Gong, Y. Wu, and D. Yu, Sens. Actuators B 216, 72 (2015).10.1016/j.snb.2015.04.025Suche in Google Scholar
[34] E. Llobet, Sens. Actuators B 179, 32 (2013).10.1016/j.snb.2012.11.014Suche in Google Scholar
[35] K. K. Makhlja, A. Ray, R. M. Patel, U. B. Trivedi, and H. N. Kapse, Bull. Mater. Sci. 28, 9 (2005).10.1007/BF02711165Suche in Google Scholar
[36] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).10.3390/s100302088Suche in Google Scholar PubMed PubMed Central
[37] Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun, and Z. Jin, J. Hazard Mater. 276, 262 (2014).10.1016/j.jhazmat.2014.05.044Suche in Google Scholar PubMed
[38] S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, Sci. Rep. 3, 1868 (2013).10.1038/srep01868Suche in Google Scholar PubMed PubMed Central
[39] D. An, Q. Wang, X. Tong, Q. Zhou, Z. Li, Y. Zou, X. Lian, and Y. Li, Sens. Actuators B 213, 155 (2015).10.1016/j.snb.2015.02.042Suche in Google Scholar
[40] F. Gao, G. Qin, Y. Li, Q. Jiang, L. Luo, K. Zhao, Y. Liu, and H. Zhao, RSC Adv. 6, 10298 (2016).10.1039/C5RA27270JSuche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics
Artikel in diesem Heft
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics