Abstract
In this article, structural properties and bonding behaviours of codoped lanthanum chromites (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 (x=0.00, 0.03, and 0.12) were investigated in detail. Polycrystalline chromite samples (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 (x=0.00, 0.03, and 0.12) were prepared by a standard solid-state reaction process. The synthesised samples were characterised for their structural, morphological, optical, and magnetic properties using powder XRD, SEM/EDS, UV–Vis, and VSM. XRD data showed that the samples were crystallised into a single phase with orthorhombic structure. Powder profile refinement analysis suggested the reduction in lattice parameters and cell volume with the addition of Cu. The electron density distributions and the bonding features of the prepared samples have been investigated using maximum entropy method (MEM). The mid bond electron density values revealed the enhancement of ionic nature between lanthanum and oxygen ions and a reduction in covalent nature between chromium and oxygen ions. Heterogeneous distribution of particles with different sizes was observed through SEM micrographs. EDS spectra confirms the presence of constituent elements in the prepared samples. Optical band gap values are decreasing with the addition of Cu. Antiferromagnetic ordering was observed from M–H curves obtained at room temperature. The structural and the magnetic properties are correlated.
Acknowledgements
One of the authors N.T would like to thank UGC, Hyderabad, the authorities of NMSSVN College and The Madura College, Madurai, India, for the FDP programme of XII plan, the period in which this effective work was carried out. The authors would like to acknowledge Sophisticated Analytical Instrument Facility (SAIF), Cochin University, India, for their help in the collection of XRD data, UV–Visible spectra, and SEM/EDS spectra. The authors would also like to acknowledge SAIF, IIT Madras, Chennai, for the VSM measurements.
References
[1] P.-G. Jesus, R. Schmidt, J.-J. Romero, D. Avila, U. Mador, et al., Inorg. Chem. 52, 313 (2013).10.1021/ic302000jSuche in Google Scholar PubMed
[2] F. A. Fabian, P. P. Pedra, J. L. S. Filho, J. G. S. Duque, and C. T. Meneses, J. Magn. Magn. Mater. 379, 80 (2015).10.1016/j.jmmm.2014.12.004Suche in Google Scholar
[3] S. Pradhan and G. S. Roy, Researcher 5, 63 (2013).Suche in Google Scholar
[4] R. Schmidt, J. Prado-Gonjal, D. Avila, U. Amador, and E. Moran, Microscopy: Adv. Sci. Res. Educ. 2, 819 (2014).Suche in Google Scholar
[5] H. Terashita, J. C. Cezar, F. M. Ardito, L. F. Bufaical, and E. Granado, Phys. Rev. B 85, 104401 (2012).10.1103/PhysRevB.85.104401Suche in Google Scholar
[6] S. P. Jiang, L. Liu, K. P. Ong, P. Wu, J. Li, et al., J. Power Sources 176, 82 (2008).10.1016/j.jpowsour.2007.10.053Suche in Google Scholar
[7] D. Berger, I. Jitaru, N. Stanica, R. Perego, and J Schoonman, J. Mater. Synth. Process. 9, 137 (2001).10.1023/A:1013297430679Suche in Google Scholar
[8] G. Setz Luiz Fernando, S. R. H. Mello-Castanho, Mater. Sci. Forum. 660–661, 1145 (2010).10.4028/www.scientific.net/MSF.660-661.1145Suche in Google Scholar
[9] D. B. Meadowcroft, Br. J. Appl. Phys. 2, 1225 (1969).10.1088/0022-3727/2/9/304Suche in Google Scholar
[10] N. Russo, D. Fino, G. Sanacco, and V. Speechia, J. Catal. 229, 459 (2005).10.1016/j.jcat.2004.11.025Suche in Google Scholar
[11] S. Ifrah, A. Kaddomi, P. Gelin, and G. Bergeret, Catal. Commun. 8, 2257 (2007).10.1016/j.catcom.2007.04.039Suche in Google Scholar
[12] S. A. Suvorov and A. P. Shevchick, Refract. Ind. Ceram. 45, 196 (2004).10.1023/B:REFR.0000036729.24986.e3Suche in Google Scholar
[13] D. L. West, F. C. Montgomery, and T. R. Armstrong, Sens. Actuators B. 106, 758 (2005).10.1016/j.snb.2004.09.028Suche in Google Scholar
[14] W. L. David, F. C. Montgomery, and T. R. Armstrong, Sens. Actuators B.111–112, 84 (2005).10.1016/j.snb.2005.06.043Suche in Google Scholar
[15] W.-Z. Zhu, Y. Mi, and J. Zhejiang, Univ Sci. 5, 1471 (2004).10.1631/jzus.2004.1471Suche in Google Scholar
[16] M. Suzuki, H. Sasaki, and A. Kajimura, Solid State Ionics. 96, 83 (1997).10.1016/S0167-2738(97)00007-6Suche in Google Scholar
[17] K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Wei, J. Electrochem. Soc. 143, 3642 (1996).10.1149/1.1837264Suche in Google Scholar
[18] A. A. Athawale and P. A. Desai, Ceram. Int. 37, 3037 (2011).10.1016/j.ceramint.2011.05.008Suche in Google Scholar
[19] L. M. Daniels, M. C. Weber, M. R. Lees, M. Guennou, R. J. Kashtiban, et al., Inorg. Chem. 52, 12161, (2013).10.1021/ic402029uSuche in Google Scholar
[20] X. Liu, W. Su, Z. Lu, J. Liu, L. Pei, et al., J. Alloys Compd. 305, 21 (2000).10.1016/S0925-8388(00)00735-0Suche in Google Scholar
[21] M. Mori and N. M. Sammes, Solid State Ionics. 146, 301 (2002).10.1016/S0167-2738(01)01020-7Suche in Google Scholar
[22] D. Berger, V. Fruth, P. Nita, and I. Jitaru, J. Optoelectron Adv Mater. 2, 557 (2000).Suche in Google Scholar
[23] P. Barrozo and J. A. Aguiar, J. Appl. Phys. 113, 17E309 (2013).10.1063/1.4801507Suche in Google Scholar
[24] T. Bora and S. Ravi, J. Appl. Phys. 114, 033906 (2013).10.1063/1.4813516Suche in Google Scholar
[25] X. Ding, Y. Liu, L. Gao, and L. Guo, J. Alloys Compd. 425, 318 (2006).10.1016/j.jallcom.2006.01.030Suche in Google Scholar
[26] R. Glenne, J. A. Horst, S. Jorgensen, T. Norby, and M. Seiersten, Surf. Interf. Anal. 22, 275 (1994).10.1002/sia.740220160Suche in Google Scholar
[27] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).10.1107/S0021889869006558Suche in Google Scholar
[28] V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic 2006.Suche in Google Scholar
[29] Y. P. Fu, H.-C. Wang, S.-H. Hu, and K.-W. Tay, Ceram. Int. 37, 2127 (2011).10.1016/j.ceramint.2011.02.028Suche in Google Scholar
[30] R. D. Shannon, Acta Cryst. A32, 751 (1976).10.1107/S0567739476001551Suche in Google Scholar
[31] R. K. Gupta and C. M. Whang, J. Phys. Condens. Matter 19, 1 (2007).Suche in Google Scholar
[32] K. P. Ong, P. Blaha, and P. Wu, Phys. Rev. B. 77, 073102 (2008).10.1103/PhysRevB.77.073102Suche in Google Scholar
[33] K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).10.1107/S0021889808012016Suche in Google Scholar
[34] T. Brajesh, A. Dixit, R. Naik, G. Lawes, and M. S. Rama Chandra Rao, Mater. Res. Exp. 2, 1 (2015).Suche in Google Scholar
[35] B. D. Culllity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. Prentice Hall, New Jersy 2001.Suche in Google Scholar
[36] D. L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).10.1103/PhysRevB.5.3144Suche in Google Scholar
[37] J. Tauc, R. Grigorvici, and A. Vancu, Phys. Status Solidi b. 15, 627 (1966).10.1002/pssb.19660150224Suche in Google Scholar
[38] S. Naseem, W. Khan, A. A Saad, M. Shoeb, H. Ahmed, et al., AIP Confer. Proc. 1591, 259 (2014).10.1063/1.4872565Suche in Google Scholar
[39] J. P. Gonjal, R. Schmidt, J. J. Romero, D. U. Amador, and E. Moran, Inorg. Chem. 52, 313 (2013).10.1021/ic302000jSuche in Google Scholar PubMed
[40] G. A. Alvarez, X. L. Wang, G. Peleckis, S. X. Dou, J. G. Zhu, et al., J. Appl. Phys. 103, 07B916 (2008).10.1063/1.2837624Suche in Google Scholar
[41] M. Tseggai, P. Nordblad, R. Tellgren, H. Rundlof, G. Andre, et al., J. Alloys Compd. 457, 532 (2008).10.1016/j.jallcom.2007.03.069Suche in Google Scholar
[42] D. M. Collins, Nature 49, 298 (1982).10.1038/298049a0Suche in Google Scholar
[43] A. D. Ruben, I. Fujio, Superfast program PRIMA for the Maximum Entropy Method, Advanced Materials Laboratory, National Institute for Material Science, Ibaraki, Japan (2004), pp. 3050044.Suche in Google Scholar
[44] C. S. Montross, J. Eur. Ceram. Soc. 18, 353 (1997).10.1016/S0955-2219(97)00143-XSuche in Google Scholar
[45] M. M. Rashad and S. M. El-Sheikh, Mater. Res. Bull. 46, 469 (2011).10.1016/j.materresbull.2010.10.016Suche in Google Scholar
[46] R. Shukla, J. Manjanna, A. K. Bera, S. M. Yusuf, and A. K. Tyagi, Inorg. Chem. 48, 11691 (2009).10.1021/ic901735dSuche in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics
Artikel in diesem Heft
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics