Abstract
The Heisenberg supermagnet model is an important supersymmetric integrable system in (1+1)-dimensions. We construct two types of the (2+1)-dimensional integrable Heisenberg supermagnet models with the quadratic constraints and investigate the integrability of the systems. In terms of the gage transformation, we derive their gage equivalent counterparts. Furthermore, we also construct new solutions of the supersymmetric integrable systems by means of the Bäcklund transformations.
Acknowledgments
This work is partially supported by the National Natural Science Foundation of China (Grant No.11605096, 11547101, and 11601247). The author thanks the valuable suggestions of the referees.
References
[1] L. Martina, O. K. Pashaev, and G. Soliani, Phys. Rev. D 58, 084025 (1998).10.1103/PhysRevD.58.084025Search in Google Scholar
[2] M. Kruczenski, Phys. Rev. Lett. 93, 161602 (2004).10.1103/PhysRevLett.93.161602Search in Google Scholar
[3] V. A. Kazakov, A. Marshakov, J. A. Minahan, and K. Zarembo, J. High Energy Phys. 05, 024 (2004).10.1088/1126-6708/2004/05/024Search in Google Scholar
[4] M. Lakshmanan, Phys. Lett. A 61, 53 (1977).10.1016/0375-9601(77)90262-6Search in Google Scholar
[5] V. E. Zakharov and L. A. Takhtadzhyan, Theor. Math. Phys. 38, 17 (1979).10.1007/BF01030253Search in Google Scholar
[6] L. A. Takhtajan, Phys. Lett. A 64, 235 (1977).10.1016/0375-9601(77)90727-7Search in Google Scholar
[7] M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988).10.1016/0375-9601(88)90520-8Search in Google Scholar
[8] D. G. Zhang and G. X. Yang, J. Phys. A 23, 2133 (1990).10.1088/0305-4470/23/11/033Search in Google Scholar
[9] K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys. 33, 1807 (1992).10.1063/1.529658Search in Google Scholar
[10] K. Porsezian, Chaos, Soliton. Fract. 9, 1709 (1998).10.1016/S0960-0779(97)00132-XSearch in Google Scholar
[11] M. Lakshmanan and S. Ganesan, J. Phys. Soc. Jpn. 52, 4031 (1983).10.1143/JPSJ.52.4031Search in Google Scholar
[12] W. Z. Zhao, Y. Q. Bai, and K. Wu, Phys. Lett. A 352, 64 (2006).10.1016/j.physleta.2005.09.088Search in Google Scholar
[13] Y. Ishimori, Prog. Theor. Phys. 72, 33 (1984).10.1143/PTP.72.33Search in Google Scholar
[14] R. Myrzakulov, On Some Integrable and Nonintegrable Soliton Equations of Magnets I−IV, HEPI, Alma-Ata 1987.Search in Google Scholar
[15] M. Lakshmanan, R. Myrzakulov, S. Vijayalakshmi, and A. K. Danlybaeva, J. Math. Phys. 39, 3765 (1998).10.1063/1.532466Search in Google Scholar
[16] R. Myrzakulov, G. N. Nugmanova, and R. N. Syzdykova, J. Phys. A 31, 9535 (1998).10.1088/0305-4470/31/47/013Search in Google Scholar
[17] P. Di Vecchia and S. Ferrara, Nucl. Phys. B 130, 93 (1977).10.1016/0550-3213(77)90394-7Search in Google Scholar
[18] P. Mathieu, J. Math. Phys. 29, 2499 (1988).10.1063/1.528090Search in Google Scholar
[19] S. Bellucci, E. Ivanov, S. Krivonos, and A. Pichugin, Phys. Lett. B 312, 463 (1993).10.1016/0370-2693(93)90983-OSearch in Google Scholar
[20] D. Sarma, Nucl. Phys. B 681, 351 (2004).10.1016/j.nuclphysb.2003.11.042Search in Google Scholar
[21] Yu. Manin and A. Radul, Commun. Math. Phys. 98, 65 (1985).10.1007/BF01211044Search in Google Scholar
[22] A. LeClair, Nucl. Phys. B 314, 425 (1989).10.1016/0550-3213(89)90160-0Search in Google Scholar
[23] Z. Popowicz, Phys. Lett. A 354, 110 (2006).10.1016/j.physleta.2006.01.027Search in Google Scholar
[24] M. Saha and A. Roy Chowdhury, Int. J. Theor. Phys. 38, (1999) 2037.10.1023/A:1026605819631Search in Google Scholar
[25] Z. W. Yan, M. L. Li, K. Wu, and W. Z. Zhao, J. Math. Phys. 54, 033506 (2013).10.1063/1.4795405Search in Google Scholar
[26] V. G. Makhankov and O. K. Pashaev, Phys. Lett. A 141, 285 (1989).10.1016/0375-9601(89)90486-6Search in Google Scholar
[27] V. G. Makhankov and O. K. Pashaev, J. Math. Phys. 33, 2923 (1992).10.1063/1.529561Search in Google Scholar
[28] J. F. Guo, S. K. Wang, K. Wu, Z. W. Yan, and W. Z. Zhao, J. Math. Phys. 50, 113502 (2009).10.1063/1.3251299Search in Google Scholar
[29] Z. W. Yan and Gegenhasi, J. Nonlinear Math. Phys. 23, 335 (2016).10.1080/14029251.2016.1199495Search in Google Scholar
[30] Z. W. Yan, M. R. Chen, K. Wu, and W. Z. Zhao, J. Phys. Soc. Jpn. 81, 094006 (2012).10.1143/JPSJ.81.094006Search in Google Scholar
[31] K. R. Esmakhanova, G. N. Nugmanova, W. Z. Zhao, and K. Wu, Integrable inhomogeneous Lakshmanan-Myrzakulov equation, arXiv:nlin/0604034v1.Search in Google Scholar
[32] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, and M. Lakshmanan, Symmetry 7, 1352 (2015).10.3390/sym7031352Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics
Articles in the same Issue
- Frontmatter
- On Type-II Bäcklund Transformation for the MKdV Hierarchy
- Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
- Study of Caking of Powders Using NQR Relaxometry with Inversion of the Laplace Transform
- Rogue Waves and Hybrid Solutions of the Boussinesq Equation
- Exact Solution for Capillary Bridges Properties by Shooting Method
- Structural, Electronic, and Mechanical Properties of CoN and NiN: An Ab Initio Study
- On the Heisenberg Supermagnet Model in (2+1)-Dimensions
- Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation
- Study on the Spectrum of Photonic Crystal Cavity and Its Application in Measuring the Concentration of NaCl Solution
- Potential Systems and Nonlocal Conservation Laws of Prandtl Boundary Layer Equations on the Surface of a Sphere
- Density and Adiabatic Compressibility of the Immiscible Molten AgBr+LiCl Mixture
- Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity
- Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties
- Crystal Structure and Bonding Analysis of (La0.8Ca0.2)(Cr0.9−x Co0.1Cux)O3 Ceramics