Startseite Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation

  • Rajesh Kumar , Jyotirmoy Maity , Divya Mathur , Abhishek Verma , Neha Rana , Manish Kumar , Sandeep Kumar und Ashok K. Prasad ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Modified nucleosides are the core precursors for the synthesis of artificial nucleic acids, and are important in the field of synthetic and medicinal chemistry. In order to synthesize various triazolo-compounds, copper and ruthenium catalysed azide–alkyne 1,3-dipolar cycloaddition reactions also known as click reaction have emerged as a facile and efficient tool due to its simplicity and convenient conditions. Introduction of a triazole ring in nucleosides enhances their therapeutic value and various photophysical properties. This review primarily focuses on the plethora of synthetic methodologies being employed to synthesize sugar modified triazolyl nucleosides, their therapeutic importance and various other applications.


Corresponding author: Ashok K. Prasad, Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, India, E-mail:

Acknowledgements

Sandeep Kumar thanks CSIR, New Delhi for award of SPM Research Fellowship [File No. 09/045(0269)/2018-EMR-1].

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. (a)Perigaud, C, Gosselin, G, Imbach, JL. Nucleoside analogues as chemotherapeutic agents: a review. Nucleos Nucleot 1992;11:903–45. https://doi.org/10.1080/07328319208021748.(b)De Clercq, E. Strategies in the design of antiviral drugs. Nat Rev Drug Discov 2002;1:13–25. https://doi.org/10.1038/nrd703.(c)De Clercq, E. Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 2005;8:552–60. https://doi.org/10.1016/j.mib.2005.08.010.(d)De Clercq, E. Antivirals and antiviral strategies. Nat Rev Microbiol 2004;2:704–20. https://doi.org/10.1038/nrmicro975.(e)Field, HJ, De Clercq, E. Antiviral drugs – a short history of their discovery and development. Microbiol Today 2004;31:58–61.(f)De Clercq, E. Milestones in the discovery of antiviral agents: nucleosides and nucleotides. Acta Pharm Sin B 2012;2:535–48. https://doi.org/10.1016/j.apsb.2012.10.001.Suche in Google Scholar

2. (a)Matsuda, A, Sasaki, T. Antitumor activity of sugar-modified cytosine nucleosides. Cancer Sci 2004;95:105–11. https://doi.org/10.1111/j.1349-7006.2004.tb03189.x.(b)Vester, B, Wengel, J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochem 2004;43:13233–41. https://doi.org/10.1021/bi0485732.(c)Agrofoglio, LA, Challand, SR, Huryn, DM, Okabe, M. AIDS-driven nucleoside chemistry. Chem Rev 1992;92:1745–68.Suche in Google Scholar PubMed

3. (a)Jordheim, LP, Durantel, D, Zoulim, F, Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013;12:447–64. https://doi.org/10.1038/nrd4010.(b)Niu, G, Tan, H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015;23:110–9. https://doi.org/10.1016/j.tim.2014.10.007.(c)De Clercq, E, Li, G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016;29:695–747. https://doi.org/10.1128/cmr.00102-15.(d)Lapponi, MJ, Rivero, CW, Zinni, MA, Britos, CN, Trelles, JA. New developments in nucleoside analogues biosynthesis: a review. J Mol Catal B Enzym 2016;133:218–33. https://doi.org/10.1016/j.molcatb.2016.08.015.(e)Maffioli, SI, Zhang, Y, Degen, D, Carzaniga, T, Del Gatto, G, Serina, S, et al.. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 2017;169:1240–8. https://doi.org/10.1016/j.cell.2017.05.042.Suche in Google Scholar PubMed

4. (a)Amblard, F, Cho, JH, Schinazi, FR. Cu(I)-catalyzed Huisgen azide–alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 2009;109:4207–20. https://doi.org/10.1021/cr9001462.(b)Xia, L, Chunxian, L, Lianjia, Z, Yanchun, Y, Jianyi, W, Dandan, C, et al.. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021;214:113233.Suche in Google Scholar PubMed PubMed Central

5. (a)Sidwell, RW, Huffman, JH, Khare, GP, Allen, LB, Witkowski, JT, Robins, RK. Broad-spectrum antiviral activity of virazole: 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 1972;177:705–6. https://doi.org/10.1126/science.177.4050.705.(b)Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antivir Res 2010;85:1–18. https://doi.org/10.1016/j.antiviral.2009.10.002.Suche in Google Scholar PubMed

6. (a)Lee, YS, Park, SM, Kim, HM, Park, SK, Lee, K, Lee, CW, et al.. C5-Modified nucleosides exhibiting anticancer activity. Bioorg Med Chem Lett 2009;19:4688–91. https://doi.org/10.1016/j.bmcl.2009.06.072.(b)Lakshman, MK, Kumar, A, Balachandran, R, Day, BW, Andrei, G, Snoeck, R, et al.. Synthesis and biological properties of C-2 triazolylinosine derivatives. J Org Chem 2012;77:5870–83. https://doi.org/10.1021/jo300628y.(c)Lakshman, MK, Singh, MK, Parrish, D, Balachandran, R, Day, BW. Azide tetrazole equilibrium of C-6 azidopurine nucleosides and their ligation reactions with alkynes. J Org Chem 2010;75:2461–73. https://doi.org/10.1021/jo902342z.(d)Cosyn, L, Gao, ZG, Van Rompaey, P, Lu, C, Jacobson, KA, Van Calenbergh, S. Synthesis of hypermodified adenosine derivatives as selective adenosine A3 receptor ligands. Bioorg Med Chem 2006;14:1403–12. https://doi.org/10.1016/j.bmc.2005.09.062.Suche in Google Scholar PubMed

7. Moustafa, AH, El-Sayed, HA, Haikal, AEFZ, El Ashry, ESH. Synthesis of acyclovir and HBG analogues having nicotinonitrile and its 2-methyloxy 1,2,3-triazole. Nucleos Nucleot Nucleic Acids 2011;30:340–52. https://doi.org/10.1080/15257770.2011.582850.Suche in Google Scholar PubMed

8. (a)Lolk, L, Pohlsgaard, J, Jepsen, AS, Hansen, LH, Nielsen, H, Steffansen, SI, et al.. A click chemistry approach to pleuromutilin conjugates with nucleosides or acyclic nucleoside derivatives and their binding to the bacterial ribosome. J Med Chem 2008;51:4957–67. https://doi.org/10.1021/jm800261u.Suche in Google Scholar PubMed

9. Wu, J, Yu, W, Fu, L, He, W, Wang, Y, Chai, B, et al.. Design, synthesis, and biological evaluation of new 2′-deoxy-2′-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents. Eur J Med Chem 2013;63:739–45. https://doi.org/10.1016/j.ejmech.2013.02.042.Suche in Google Scholar PubMed

10. (a)El Sadek, MM, Abd El-Dayem, NS, Hassan, SY, Mostafa, MA, Yacout, GA. Antioxidant and antitumor activities of new synthesized aromatic C-nucleoside derivatives. Molecules 2014;19:5163–90. https://doi.org/10.3390/molecules19045163.(b)Wang, M, Xia, Y, Fan, Y, Rocchi, P, Qu, F, Iovanna, JL, et al.. A novel arylethynyltriazole acyclonucleoside inhibits proliferation of drug-resistant pancreatic cancer cells. Bioorg Med Chem Lett 2010;20:5979–83. https://doi.org/10.1016/j.bmcl.2010.08.093.Suche in Google Scholar PubMed PubMed Central

11. (a)Kosiova, I, Kovackova, S, Kois, P. Synthesis of coumarin–nucleoside conjugates via Huisgen 1,3-dipolar cycloaddition. Tetrahedron 2007;63:312–20. https://doi.org/10.1016/j.tet.2006.10.075.(b)Jawalekar, AM, Meeuwenoord, N, Cremers, JGO, Overkleeft, HS, van der Marel, GA, Rutjes, FPJT, et al.. Conjugation of nucleosides and oligonucleotides by [3 + 2] cycloaddition. J Org Chem 2008;73:287–90. https://doi.org/10.1021/jo702023s.(c)Baraniak, D, Kacprzak, K, Celewicz, L. Synthesis of 3′-azido-3′-deoxythymidine (AZT)-Cinchona alkaloid conjugates via click chemistry: toward novel fluorescent markers and cytostatic agents. Bioorg Med Chem Lett 2011;21:723–6. https://doi.org/10.1016/j.bmcl.2010.11.127.Suche in Google Scholar

12. Anand, KA, Priyanka, B, Manoj, KJ, Sanchayita, R, Anoop, SS, Srinivas, H, et al.. Cu(I)-Catalyzed lick chemistry in glycoscience and their diverse applications. Chem Rev 2021;121:7638–956.10.1021/acs.chemrev.0c00920Suche in Google Scholar PubMed

13. (a)Huisgen, R, Szeimies, G, Mobius, L. 1,3-Dipolare cycloadditionen, XXXII. Kinetik der Additionenorganischerazidean CC-mehrfachbindungen. Chem Ber 1967;100:2494–507. https://doi.org/10.1002/cber.19671000806.(b)Huisgen, R. 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 1963;2:565–98. https://doi.org/10.1002/anie.196305651.Suche in Google Scholar

14. (a)Tornøe, CW, Meldal, M. In: Proceedings of the second international and the seventeenth American peptide symposium; 2001:263 p.(b)Kolb, HC, Finn, MG, Sharpless, KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 2001;40:2004–21. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5.(c)Rostovtsev, VV, Green, LG, Fokin, VV, Sharpless, KB. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002;41:2596–9. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4.Suche in Google Scholar

15. Zhang, L, Chen, X, Xue, P, Sun, HHY, Williams, ID, Sharpless, KB, et al.. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 2005;127:15998–9. https://doi.org/10.1021/ja054114s.Suche in Google Scholar PubMed

16. Moses, JE, Moorhouse, AD. The growing applications of click chemistry. Chem Soc Rev 2007;36:1249–62. https://doi.org/10.1039/b613014n.Suche in Google Scholar PubMed

17. Khakshoor, O, Kool, ET. Chemistry of nucleic acids: impacts in multiple fields. Chem Commun 2011;47:7018–24. https://doi.org/10.1039/c1cc11021g.Suche in Google Scholar PubMed PubMed Central

18. Earla, RA, Townsend, LB. The synthesis of 8-aza-3-deazaguanosine [6-amino-1-(β-d-ribofuranosyl)-υ-triazolo[4,5-c]pyridin-4-one] via a novel 1,3-dipolar cycloaddition reaction. Can J Chem 1980;58:2550–61. https://doi.org/10.1139/v80-407.Suche in Google Scholar

19. Revankar, GR, Robins, RK, Ann, NY. Synthesis and biological activity of some nucleosides resembling guanosine: imidazo(1,2-alpha)pyrimidine nucleosides. Acad Sci 1975;255:166–76. https://doi.org/10.1111/j.1749-6632.1975.tb29221.x.Suche in Google Scholar PubMed

20. (a)Wu, J, Yu, W, Fu, L, He, W, Wang, Y, Chai, B, et al.. Eur J Med Chem 2013;63:739–45.(b)Bussolari, JC, Ramesh, K, Stoeckler, JD, Chen, S-F, Panzica, RP. Synthesis and biological evaluation of N4-substituted imidazo-and v-triazolo [4, 5-d] pyridazine nucleosides. J Med Chem 1993;36:4113–20. https://doi.org/10.1021/jm00077a017.Suche in Google Scholar PubMed

21. Bussolari, JC, Panzica, RP. Synthesis and anti-HIV evaluation of 2′,3′-dideoxy imidazo-and ν-triazolo [4, 5-d] pyridazine nucleosides. Bioorg Med Chem 1999;7:2373–9. https://doi.org/10.1016/s0968-0896(99)00184-4.Suche in Google Scholar PubMed

22. Saito, Y, Escuret, V, Durantel, D, Zoulim, F, Schinazic, RF, Agrofoglio, LA. Synthesis of 1,2,3-triazolo-carbanucleoside analogues of ribavirin targeting an HCV in replicon. Bioorg Med Chem 2003;11:3633–9. https://doi.org/10.1016/s0968-0896(03)00349-3.Suche in Google Scholar PubMed

23. Joubert, N, Schinazi, RF, Agrofoglio, LA. Efficient Pd(0)-catalyzed synthesis of 1, 2, 3-triazolo-3′-deoxycarbanucleosides and their analogues. Tetrahedron 2005;61:11744–50. https://doi.org/10.1016/j.tet.2005.09.034.Suche in Google Scholar

24. (a)Hutchinson, A, Grim, M, Chen, J. A short and stereoselective synthesis of (±)-aristeromycin. J Heterocycl Chem 1989;26:451–2.(b)Depres, J-P, Greene, A. Improved selectivity in the preparation of some 1, 1-difunctionalized 3-cyclopentenes. High yield synthesis of 3-cyclopentenecarboxylic acid. J Org Chem 1984;49:928–31. https://doi.org/10.1021/jo00179a035.Suche in Google Scholar

25. (a)An, H, Ding, Y, Chamakura, V, Hong, Z. WO patent 061576, 2003.(b)Tseng, CK, Marquez, VE, Fuller, RW, Goldstein, BM, Haines, DR, McPherson, H, et al.. Synthesis of 3-deazaneplanocin A, a powerful inhibitor of S-adenosylhomocysteine hydrolase with potent and selective in vitro and in vivo antiviral activities. J Med Chem 1989;32:1442–6. https://doi.org/10.1021/jm00127a007.(c)Ramasamy, K, Imamura, N, Hanna, NB, Finch, RA, Avery, TL, Robins, RK, et al.. Synthesis and antitumor evaluation in mice of certain 7-eazapurine (pyrrolo[2,3-dr]pyrimidine) and 3-deazapurine (imidazo[4,5-c]pyridine) nucleosides structurally elated to sulfenosine, sulfinosine, and sulfonosine. J Med Chem 1990;33:1220–5. https://doi.org/10.1021/jm00166a021.Suche in Google Scholar PubMed

26. Schinazi, RF, Sommadossi, JP, Saalmann, V, Cannon, DL, Xie, M-W, Hart, GC, et al.. Activities of 3′-azido-3′-deoxythymidine nucleotide dimers in primary lymphocytes infected with human immunodeficiency virus type 1. Antimicrob Agents Chemother 1990;34:1061–7. https://doi.org/10.1128/aac.34.6.1061.Suche in Google Scholar

27. Stuyver, LJ, Lostia, S, Adams, M, Mathew, J, Pai, BS, Grier, J, et al.. Antiviral activities and cellular toxicities of modified 2′,3′-dideoxy-2′,3′-didehydrocytidine analogues. Antimicrob Agents Chemother 2002;46:3854–60. https://doi.org/10.1128/aac.46.12.3854-3860.2002.Suche in Google Scholar PubMed PubMed Central

28. Guezguez, R, Bougrin, K, Akria, K-EI, Benhida, R. A highly efficient microwave-assisted solvent-free synthesis of α-and β-2′-deoxy-1,2,3-triazolyl-nucleosides. Tetrahedron Lett 2006;47:4807–11. https://doi.org/10.1016/j.tetlet.2006.05.050.Suche in Google Scholar

29. Hoffer, M. α-Thymidin. Chem Ber 1960;93:2777–81. https://doi.org/10.1002/cber.19600931204.Suche in Google Scholar

30. Broggi, J, Joubert, N, Aucagne, V. Study of different copper (I) catalysts for the “Click Chemistry” approach to carbanucleosides. Nucleos Nucleot Nucleic Acids 2007;26:779–83. https://doi.org/10.1080/15257770701501492.Suche in Google Scholar PubMed

31. Pradere, U, Roy, V, McBrayer, TR, Schinazi, RF, Agrofoglio, LA. Preparation of ribavirin analogues by copper-and ruthenium-catalyzedazide-alkyne 1, 3-dipolar cycloaddition. Tetrahedron 2008;64:9044–51. https://doi.org/10.1016/j.tet.2008.07.007.Suche in Google Scholar PubMed PubMed Central

32. (a)Caddick, S. Microwave assisted organic reactions. Tetrahedron 1995;51:10403–32. https://doi.org/10.1016/0040-4020(95)00662-r.(b)Perreux, L, Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001;57:9199–223. https://doi.org/10.1016/s0040-4020(01)00905-x.(c)Loupy, A. Microwaves in organic synthesis. Weinheim: Wiley-VCH; 2002.(d)Kappe, CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 2004;43:6250–84. https://doi.org/10.1002/anie.200400655.Suche in Google Scholar

33. Perez-Castro, I, Caamano, O, Fernandez, F, Garcia, MD, Lopeza, C, De Clercq, E. Synthesis of 4-substituted-1,2,3-triazole carbanucleoside analogues of ribavirin via click chemistry. Org Biomol Chem 2007;5:3805–13. https://doi.org/10.1039/b710348d.Suche in Google Scholar PubMed

34. Akri, K-E, Bougrin, K, Balzarini, J, Farajd, A, Benhida, R. Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides. Bioorg Med Chem Lett 2007;17:6656–9. https://doi.org/10.1016/j.bmcl.2007.08.077.Suche in Google Scholar PubMed

35. Broggi, J, Kumamoto, H, Berteina-Raboin, S, Nolan, SP, Agrofoglio, LA. Click azide-alkyne cycloaddition for the synthesis of D-(–)-1,4-disubstituted triazolo-carbanucleosides. Eur J Org Chem 2009;2009:1880–8. https://doi.org/10.1002/ejoc.200801124.Suche in Google Scholar

36. Malnuit, V, Duca, M, Manout, A, Bougrin, K, Benhida, R. Tandem azide-alkyne 1,3-dipolar cycloaddition/electrophilic addition: a concise three-component route to 4,5-disubstituted triazolyl-nucleosides. Synlett 2009;13:2123–8.10.1055/s-0029-1217560Suche in Google Scholar

37. Himo, F, Locell, T, Hilgtaf, R, Rostovtsev, VV, Noodleman, L, Sharpless, KB, et al.. Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 2005;127:210–6. https://doi.org/10.1021/ja0471525.Suche in Google Scholar PubMed

38. Amigues, EJ, Armstrong, E, Dvorakova, M, Migaud, ME, Huang, M. β-1,2,3-Triazolyl-nucleosides as nicotinamideriboside mimics. Nucleos Nucleot Nucleic Acids 2009;28:238–59. https://doi.org/10.1080/15257770902865415.Suche in Google Scholar PubMed

39. Pérez-Castro, I, Caamaño, O, Fernández, F, García, MD, López, C, de Clercq, E. A “click chemistry” approach to the straightforward synthesis of new 4-aryl-1,2,3-triazolocarbanucleosides. Arkivoc 2010;3:152–68.10.3998/ark.5550190.0011.314Suche in Google Scholar

40. Agrofoglio, L, Condom, R, Guedj, R, Challand, SR, Selway, J. Synthesis of three new carbocyclic analogues of 3′-deoxy purine ribonucleosides. Nucleos Nucleot 1994;13:1147–60. https://doi.org/10.1080/15257779408011885.Suche in Google Scholar

41. Kolganova, NA, Florentiev, VL, Chudinov, AV, Zasedatelev, AS, Timofeev, EN. Simple and stereoselective preparation of an 4-(aminomethyl)-1,2,3-triazolylnucleoside phosphoramidite. Chem Biodivers 2011;8:568–76. https://doi.org/10.1002/cbdv.201000047.Suche in Google Scholar PubMed

42. Parmenopoulou, V, Chatzileontiadou, DSM, Manta, S, Bougiatioti, S, Maragozidis, P, Gkaragkouni, D-N, et al.. Triazole pyrimidine nucleosides as inhibitors of Ribonuclease A. Synthesis, biochemical, and structural evaluation. Bioorg Med Chem 2012;20:7184–93. https://doi.org/10.1016/j.bmc.2012.09.067.Suche in Google Scholar PubMed

43. Elayadi, H, Mesnaoui, M, Korba, BE, Smietana, M, Vasseur, JJ, Secrist, JA, et al.. Preparation of 1,4-disubstituted-1, 2, 3-triazolo ribonucleosides by Na2CuP2O7 catalyzed azide-alkyne 1, 3-dipolar cycloaddition. Arkivoc 2012;8:76–89. https://doi.org/10.3998/ark.5550190.0013.807.Suche in Google Scholar

44. (a)Kabbaj, Y, Lazrek, HB, Barascut, JL, Imbach, JL. Synthesis and biological activity of some unsaturated 6-azauracil acyclonucleosides. Nucleos Nucleot Nucleic Acids 2005;24:161–72. https://doi.org/10.1081/ncn-200055695.(b)Redwane, N, Lazrek, HB, Barascut, JL, Imbach, JL, Balzarini, J, Witvrouw, M. Synthesis and biological activities of (Z) and (E) α-ethenyl acylonucleosides. Nucleos Nucleot Nucleic Acids 2001;20:1439–47. https://doi.org/10.1081/ncn-100105239.Suche in Google Scholar

45. Lazrek, HB, Rochdi, A, Khaider, H, Barascut, JL, Imbach, JL, Balzarini, J, et al.. Synthesis of (Z) and (E) α-alkenyl phosphonic acid derivatives of purines and pyrimidines. Tetrahedron 1998;54:3807–16. https://doi.org/10.1016/s0040-4020(98)00107-0.Suche in Google Scholar

46. Ferreira, MLG, Pinheiro, LCS, Santos-Filho, OA, Pec¸anha, MDS, Sacramento, CQ, Machado, V. Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med Chem Res 2014;23:1501–11. https://doi.org/10.1007/s00044-013-0762-6.Suche in Google Scholar

47. Dell’Isola, A, McLachlan, MMW, Neuman, BW, Al-Mullah, HMN, Binks, AWD, Elvidge, W, et al.. Synthesis and antiviral properties of spirocyclic [1,2,3]- triazolooxazine nucleosides. Chem Eur J 2014;20:1–6.10.1002/chem.201403560Suche in Google Scholar PubMed PubMed Central

48. Perali, RS, Mandava, S, Bandi, R. A convenient synthesis of L-ribose from D-fructose. Tetrahedron 2011;67:4031–5. https://doi.org/10.1016/j.tet.2011.04.012.Suche in Google Scholar

49. Reddy, PV, Saquib, M, Mishra, NN, Shukla, PK, Shaw, AK. Stereoselective synthesis of tetrahydrofuranyl 1, 2, 3-triazolyl C-nucleoside analogues by ‘click’ chemistry and investigation of their biological activity. Arkivoc 2014;4:170–82. https://doi.org/10.3998/ark.5550190.p008.374.Suche in Google Scholar

50. Elayadi, H, Lazrek, HB. CuSO4/KI As catalyst for the synthesis of 1,4-disubstituted-1,2,3-triazolo-nucleosides. Nucleos Nucleot Nucleic Acids 2015;34:433–41. https://doi.org/10.1080/15257770.2015.1014047.Suche in Google Scholar PubMed

51. Ouahrouch, A, Taourirte, M, Schols, D, Snoeck, R, Andrei, G, Engels, JW, et al.. Design, synthesis, and antiviral activity of novel ribonucleosides of 1,2,3-triazolylbenzyl-aminophosphonates. Arch Pharm Chem Life Sci 2016;349:30–41. https://doi.org/10.1002/ardp.201500292.Suche in Google Scholar PubMed PubMed Central

52. Bag, SS, Das, SK. Design, synthesis and photophysical property of a doubly widened fused-triazolyl-phenanthrene unnatural nucleoside. Chem Select 2017;2:3577–83. https://doi.org/10.1002/slct.201700392.Suche in Google Scholar

53. Bag, SS, Talukdar, S, Matsumoto, K, Kundu, R. Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair. J Org Chem 2013;78:278–91. https://doi.org/10.1021/jo302033f.Suche in Google Scholar PubMed

54. Bag, SS, Talukdar, S, Das, SK, Pradhan, MK, Mukherjee, S. Donor/acceptor chromophores-decorated triazolyl unnatural nucleosides: synthesis, photophysical properties and study of interaction with BSA. Org Biomol Chem 2016;14:5088–108. https://doi.org/10.1039/c6ob00500d.Suche in Google Scholar PubMed

55. Alaoui, S, Dufies, M, Driowya, M, Demange, L, Bougrin, K, Robert, G. Synthesis and anti-cancer activities of new sulfonamides 4-substituted-triazolyl nucleosides. Bioorg Med Chem Lett 2017;27:1989–92. https://doi.org/10.1016/j.bmcl.2017.03.018.Suche in Google Scholar PubMed

56. Passays, J, Rubay, C, Marcélis, L, Elias, B. Synthesis and photophysical properties of triazolylIrIII nucleosides. Eur J Inorg Chem 2017;2017:623–9. https://doi.org/10.1002/ejic.201601227.Suche in Google Scholar

57. Liu, Y, Peng, Y, Lu, J, Wang, J, Ma, H, Song, C, et al.. Design, synthesis, and biological evaluation of new 1,2,3-triazolo-2′-deoxy-2′-fluoro-4′-azido nucleoside derivatives as potent anti-HBV agents. Eur J Med Chem 2018;143:137–49. https://doi.org/10.1016/j.ejmech.2017.11.028.Suche in Google Scholar PubMed

58. Andreeva, OV, Belenok, MG, Saifina, LF, Shulaeva, MM, Dobrynin, AB, Sharipova, RR, et al.. Synthesis of novel 1,2,3-triazolyl nucleoside analogues bearing uracil, 6-methyluracil, 3,6-dimethyluracil, thymine, and quinazoline-2,4-dione moieties. Tetrahedron Lett 2019;60:151276–81. https://doi.org/10.1016/j.tetlet.2019.151276.Suche in Google Scholar

59. Cai, SX, Tian, YE, Hu, XUS. Patent 9290460 B2. 2012, WO2012/130166.Suche in Google Scholar

60. Ingale, SS, Seela, F. Nucleoside and oligonucleotide pyrene conjugates with 1,2,3-triazolyl or ethynyl linkers: synthesis, duplex stability, and fluorescence changes generated by the DNA-dye connector. Tetrahedron 2014;70:380–91. https://doi.org/10.1016/j.tet.2013.11.048.Suche in Google Scholar

61. Maikhuri, VK, Bohra, K, Srivastava, S, Kavita, Prasad, AK. Click synthesis of N1-(β-d-ribofuranosyl)-C4-(coumarin-4″-yl)-1,2,3-triazoles. Synth Commun 2019;49:3140–7. https://doi.org/10.1080/00397911.2019.1657150.Suche in Google Scholar

62. Srivastava, S, Bimal, D, Bohra, K, Singh, B, Ponnan, P, Jain, R, et al.. Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl-/-coumarinyl-1,2,3-triazole. Eur J Med Chem 2018;150:268–81. https://doi.org/10.1016/j.ejmech.2018.02.067.Suche in Google Scholar PubMed

63. O′Mahony, G, Svensson, S, Sundgren, A, Grtli, M. Synthesis of 2′-([1,2,3] triazol-1-yl)-2′-deoxyadenosines. Nucleos Nucleot Nucleic Acids 2008;27:449–59.10.1080/15257770802086880Suche in Google Scholar PubMed

64. Mathur, D, Rana, N, Olsen, CE, Parmar, VS, Prasad, AK. Improved and efficient synthesis of chromeno[4,3-d]pyrazolo [3,4-b]pyridin-6(3H)-ones and their fluorescence properties. J Heterocycl Chem 2014;51:1036–44.10.1002/jhet.2104Suche in Google Scholar

65. Kumar, S. Design and synthesis of triazole-linked xylo-nucleoside dimers. Nucleos Nucleot Nucleic Acids 2015;34:371–8. https://doi.org/10.1080/15257770.2014.1003652.Suche in Google Scholar PubMed

66. Wigerinck, P, Aerschot, AV, Claes, P, Balzarini, J, De Clercq, E, Herdewijn, P. 3′-(1,2,3-Triazol-1-yl)-2′,3′-dideoxythymidine and 3′-(1,2,3-triazol-1-yl)-2′,3′-dideoxyuridine. J Heterocycl Chem 1989;26:1635–42.10.1002/jhet.5570260624Suche in Google Scholar

67. Zhou, L, Amer, A, Korn, M, Burda, R, Balzarini, J, De Clercq, E, et al.. Synthesis and antiviral activities of 1,2,3-triazole functionalized thymidines: 1,3-dipolar cycloaddition for efficient regioselective diversity generation. Antivir Chem Chemother 2005;16:375–83. https://doi.org/10.1177/095632020501600604.Suche in Google Scholar PubMed

68. Lin, J, Roy, V, Wang, L, You, L, Agrofoglio, LA, Deville-Bonne, D, et al.. 3′-(1,2,3-Triazol-1-yl)-3′-deoxythymidine analogs as substrates for human and Ureaplasma parvum thymidine kinase for structure–activity investigations. Bioorg Med Chem 2010;18:3261–9. https://doi.org/10.1016/j.bmc.2010.03.023.Suche in Google Scholar PubMed PubMed Central

69. Poecke, SV, Negri, A, Gago, F, Daele, IV, Solaroli, N, Karlsson, A, et al.. 3′-[4-Aryl-(1,2,3-triazol-1-yl)]-3′-deoxythymidine analogues as potent and selective inhibitors of human mitochondrial thymidine kinase. J Med Chem 2010;53:2902–12. https://doi.org/10.1021/jm901532h.Suche in Google Scholar PubMed

70. Roy, V, Obikhod, A, Zhang, H-W, Coats, SJ, Herman, BD, Sluis-Cremer, N, et al.. Synthesis and anti-HIV evaluation of 3′-triazolo nucleosides. Nucleos Nucleot Nucleic Acids 2011;30:264–70. https://doi.org/10.1080/15257770.2011.580291.Suche in Google Scholar PubMed PubMed Central

71. Sun, J, Liu, X, Li, H, Duan, R, Wu, J. Synthesis and anti-HIV activity of triazolo-fused 3′,5′-cyclic nucleoside analogues derived from an IntramolecularHuisgen 1,3-dipolar cycloaddition. Helv Chim Acta 2012;95:772–9. https://doi.org/10.1002/hlca.201100366.Suche in Google Scholar

72. Peiyuan, J, Jinrong, L, Changqi, Z, Yong, J. Chin. Synthesis and antitumor activities of novel 1,2,3-triazole-fused oligoconjugates based on nucleoside and saccharide. J Org Chem 2012;32:1673–7.10.6023/cjoc201205031Suche in Google Scholar

73. Sun, J, Duan, R, Li, H, Wu, J. Synthesis and anti-HIV activity of triazolo-fused 2′,3′-cyclic nucleoside analogs prepared by an intramolecular Huisgen 1,3-dipolar cycloaddition. Helv Chim Acta 2013;96:59–68. https://doi.org/10.1002/hlca.201200285.Suche in Google Scholar

74. Sirivolu, VR, Vernekar, SKV, Ilina, T, Myshakina, NS, Parniak, MA, Wang, Z. Clicking 3′-azidothymidine into novel potent inhibitors of human immunodeficiency virus. J Med Chem 2013;56:8765–80. https://doi.org/10.1021/jm401232v.Suche in Google Scholar PubMed PubMed Central

75. Arya, A, Mathur, D, Tyagi, A, Kumar, R, Kumar, V, Olsen, CE, et al.. Chemoenzymatic synthesis of 3′-deoxy-3′-(4-substituted-triazol-1-yl)-5-methyluridine. Nucleos Nucleot Nucleic Acids 2013;32:646–59. https://doi.org/10.1080/15257770.2013.847957.Suche in Google Scholar PubMed

76. Vernekar, SKV, Qiu, L, Zhang, J, kankanala, J, Li, H, Geraghty, RJ, et al.. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile virus and dengue virus. J Med Chem 2015;9:4016–28. https://doi.org/10.1021/acs.jmedchem.5b00327.Suche in Google Scholar PubMed PubMed Central

77. Chaudhary, PM, Chavan, SR, Shirazi, F, Razdan, M, Nimkar, P, Maybhate, SP, et al.. Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors. Bioorg Med Chem 2009;17:2433–40. https://doi.org/10.1016/j.bmc.2009.02.019.Suche in Google Scholar PubMed

78. Yu, J-L, Wu, Q-P, Zhang, Q-S, Xi, X-D, Liu, N-N, Li, Y-Z, et al.. Synthesis and antitumor activity of novel 2′,3′-diethanethio-2′,3′,5′-trideoxy-5′-triazolonucleoside analogues. Eur J Med Chem 2010;45:3219–22. https://doi.org/10.1016/j.ejmech.2010.03.038.Suche in Google Scholar PubMed

79. Bodnár, B, Mernyák, E, Wölfling, J, Schneider, G, Herman, BE, Szécsi, M, et al.. Synthesis and biological evaluation of triazolyl 13α-estrone–nucleoside bioconjugates. Molecules 2016;21:1212–27. https://doi.org/10.3390/molecules21091212.Suche in Google Scholar PubMed PubMed Central

80. Ruddarraju, RR, Murugulla, AC, Kotla, R, Tirumalasetty, MCB, Wudayagiri, R, Donthabakthuni, S, et al.. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives. Eur J Med Chem 2016;123:379–96. https://doi.org/10.1016/j.ejmech.2016.07.024.Suche in Google Scholar PubMed

Published Online: 2022-01-13

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Magnetic characterization of magnetoactive elastomers containing magnetic hard particles using first-order reversal curve analysis
  4. Microscopic understanding of particle-matrix interaction in magnetic hybrid materials by element-specific spectroscopy
  5. Biodeinking: an eco-friendly alternative for chemicals based recycled fiber processing
  6. Bio-based polyurethane aqueous dispersions
  7. Cellulose-based polymers
  8. Biodegradable shape-memory polymers and composites
  9. Natural substances in cancer—do they work?
  10. Personalized and targeted therapies
  11. Identification of potential histone deacetylase inhibitory biflavonoids from Garcinia kola (Guttiferae) using in silico protein-ligand interaction
  12. Chemical computational approaches for optimization of effective surfactants in enhanced oil recovery
  13. Social media and learning in an era of coronavirus among chemistry students in tertiary institutions in Rivers State
  14. Techniques for the detection and quantification of emerging contaminants
  15. Occurrence, fate, and toxicity of emerging contaminants in a diverse ecosystem
  16. Updates on the versatile quinoline heterocycles as anticancer agents
  17. Trends in microbial degradation and bioremediation of emerging contaminants
  18. Power to the city: Assessing the rooftop solar photovoltaic potential in multiple cities of Ecuador
  19. Phytoremediation as an effective tool to handle emerging contaminants
  20. Recent advances and prospects for industrial waste management and product recovery for environmental appliances: a review
  21. Integrating multi-objective superstructure optimization and multi-criteria assessment: a novel methodology for sustainable process design
  22. A conversation on the quartic equation of the secular determinant of methylenecyclopropene
  23. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules
  24. An overview of in silico methods used in the design of VEGFR-2 inhibitors as anticancer agents
  25. Fragment based drug design
  26. Advances in heterocycles as DNA intercalating cancer drugs
  27. Systems biology–the transformative approach to integrate sciences across disciplines
  28. Pharmaceutical interest of in-silico approaches
  29. Membrane technologies for sports supplementation
  30. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents
  31. Membrane applications in the food industry
  32. Membrane techniques in the production of beverages
  33. Statistical methods for in silico tools used for risk assessment and toxicology
  34. Dicarbonyl compounds in the synthesis of heterocycles under green conditions
  35. Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation
  36. Anaerobic digestion fundamentals, challenges, and technological advances
  37. Survival is the driver for adaptation: safety engineering changed the future, security engineering prevented disasters and transition engineering navigates the pathway to the climate-safe future
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0090/html
Button zum nach oben scrollen