Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
-
K. Donnerbauer
M.Sc. Kai Donnerbauer works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since February 2021. Besides fatigue investigations of metastable austenitic steels he is concerned with microstructural characterization by means of microscopic techniques EBSD and AFM., L. A. Koch
Luca Alexander Koch works as Student Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since December 2021. In the course of this investigation he was responsible for metallographic preparation, hardness measurements and for microscopic investigations.
Abstract
For the metastable austenitic steel AISI 347 (X6CrNiNb18-10), various electropolishing parameters were evaluated by means of hardness testing, electron backscatter diffraction (EBSD), and atomic force microscopy. Depending on the chosen parameters, different surface characteristics could be achieved simply by only varying voltage, flow rate, and polishing time, although EBSD indexing was always possible. Differences in hardness of up to 20 HV0.5 and in microscopic roughness could be detected on otherwise comparable samples. Finally, the microstructure distribution of a hot rolled bar material with a diameter of 153 mm made from AISI 347 was characterized over the cross section using the previously determined parameter set. Here, insights about recrystallization during forming were concluded and δ-ferrite was differentiated from α’-martensite by kernel average misorientation and morphology.
Kurzfassung
Mittels Härteprüfung, Elektronenrückstreubeugung (EBSD) und Rasterkraftmikroskopie wurden verschiedene Elektropolierparameter für den metastabilen austenitischen Stahl AISI 347 (X6CrNiNb18-10) ausgewertet. Entsprechend der gewählten Parameter konnten unterschiedliche Oberflächeneigenschaften dadurch erzielt werden, dass lediglich Spannung, Durchflussrate und Polierzeit variiert wurden, wobei immer eine EBSD-Indizierung möglich war.. Bei ansonsten vergleichbaren Proben konnten Unterschiede in der Härte von bis zu 20 HV0,5 und der mikroskopischen Rauheit festgestellt werden. Schließlich wurde die Gefügeverteilung von Stangenmaterial aus warmgewalztem AISI 347 mit einem Durchmesser von 153 mm unter Anwendung des zuvor ermittelten Parametersatzes im Querschnitt charakterisiert. Dabei konnten Erkenntnisse über die während der Umformung stattfindende Rekristallisation gewonnen und δ-Ferrit basierend auf der Kernel Average Misorientation (KAM) (lokale Missorientierung) und der Morphologie von α’-Martensit abgegrenzt werden.
About the authors
M.Sc. Kai Donnerbauer works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since February 2021. Besides fatigue investigations of metastable austenitic steels he is concerned with microstructural characterization by means of microscopic techniques EBSD and AFM.
Luca Alexander Koch works as Student Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since December 2021. In the course of this investigation he was responsible for metallographic preparation, hardness measurements and for microscopic investigations.
5 Acknowledgments
The authors thank the German Research Foundation and the Ministry of Culture and Science of North Rhine-Westphalia (Ministerium fuer Kultur und Wissenschaft des Landes Nordrhein-Westfalen, MKW NRW) for their financial support within the major research instrumentation program for the in situ atomic force microscope (project no. 445052562).
5 Danksagung
Die Autoren danken der Deutschen Forschungsgemeinschaft und dem Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen (MKW NRW) für die finanzielle Unterstützung im Rahmen des Programms Forschungsgroßgeräte für das in-situ-Rasterkraftmikroskop (Projekt-Nr. 445052562).
References / Literatur
[1] Carneiro,Í.; Simões, S.: Recent advances in EBSD characterization of metals. Metals 10 (2020) 8, S. 1097. 10.3390/met10081097Suche in Google Scholar
[2] Koll, L.; Tsipouridis, P.; Werner, E. A.: Preparation of metallic samples for electron backscatter diffraction and its influence on measured misorientation. Journal of microscopy 243 (2011) 2, S. 206–219. 10.1111/j.1365-2818.2011.03495.xSuche in Google Scholar PubMed
[3] Juuti, T.; Uusikallio, S.; Kaijalainen, A.; Heinonen, E.; Tun, N. T.; Porter, D. A.: The effect of sample preparation on the microstructure of austenitic-ferritic stainless steel. MSF 879 (2016), S. 873–878. 10.4028/www.scientific.net/MSF.879.873Suche in Google Scholar
[4] Heckmann, K.; Acosta, R.; Bill, T.; Donnerbauer, K.; Boller, C.; Sievers, J.; Barrientos, M. M.; Walther, F.; Starke, P.: Detection of fatigue degradation in austenitic stainless steel with eddy current probe and machine learning. Journal of Materials Research and Technology 27 (2023), S. 7336–7346. 10.1016/j.jmrt.2023.11.176Suche in Google Scholar
[5] Otto, J. L.; Sauer, L. M.; Brink, M.; Schaum, T.; Lingnau, L. A.; Macias Barrientos, M.; Walther, F.: A 2D and 3D segmentation-based microstructure study on the role of brittle phases in diffusion brazed AISI 304L/NiCrSiFeMoB joints. Materials & Design 235 (2023), S. 112401. 10.1016/j.matdes.2023.112401Suche in Google Scholar
[6] Han, W.; Fang, F.: Fundamental aspects and recent developments in electropolishing. International Journal of Machine Tools and Manufacture 139 (2019), S. 1–23. 10.1016/j.ijmachtools.2019.01.001Suche in Google Scholar
[7] Łyczkowska-Widłak, E.; Lochyn´ski, P.; Nawrat, G.: Electrochemical polishing of austenitic stainless steels. Materials (Basel, Switzerland) 13 11. 10.3390/ma13112557Suche in Google Scholar PubMed PubMed Central
[8] Dubrovski, O.; Tietze, S.; Zigelman, A.; Drese, K. S.; Lindner, G.; Manor, O.: The enhancement of ion transport in an electrochemical cell using high frequency vibration for the electropolishing of copper. Journal of The Electrochemical Society 165 (2018) 5, S. 236–244. 10.1149/2.0811805jesSuche in Google Scholar
[9] Grimm, R. D.; West, A. C.; Landolt, D.: AC impedance study of anodically formed salt films on iron in chloride solution. Journal of The Electrochemical Society 139 (1992) 6, S. 1622–1629. 10.1149/1.2069467Suche in Google Scholar
[10] Gwon, H.; Chae, J.; Jeong, C.; Lee, H.; Kim, D. H.; Anaman, S. Y.; Jeong, D.; Cho, H.-H.; Kwon, Y.-K.; Kim, S.-J.; Han, H. N.: Martensitic transformation during electrochemical polishing of metastable austenitic stainless steel. Acta Materialia 245 (2023), S. 118612. 10.1016/j.actamat.2022.118612Suche in Google Scholar
[11] Landolt, D.: Fundamental aspects of electropolishing. Electrochimica Acta 32, (1987) 1, S. 1–11. 10.1016/0013-4686(87)87001-9Suche in Google Scholar
[12] Wright, S. I.; Nowell, M. M.: Kloe, R. de; Camus, P.; Rampton, T.: Electron imaging with an EBSD detector. Ultramicroscopy 148 (2015), S. 132–145. 10.1016/j.ultramic.2014.10.002Suche in Google Scholar PubMed
[13] Rozo Vasquez, J.; Arian, B.; Kersting, L.; Homberg, W.; Trächtler, A.; Walther, F.: Detection of phase transformation during plastic deformation of metastable austenitic steel AISI 304L by means of X-ray diffraction pattern analysis. Metals 13 (2023) 6, S. 1007. 10.3390/met13061007Suche in Google Scholar
[14] Talonen, J.; Aspegren, P.; Hänninen, H.: Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Materials Science and Technology 20 (2004) 1, S. 1506–1512. 10.1179/026708304X4367Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Artikel in diesem Heft
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary