Home Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
Article
Licensed
Unlicensed Requires Authentication

Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods

  • L. A. Lingnau

    Lars Andree Lingnau works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since May 2022. Besides the investigation of the influence of forming-induced ductile damage on the fatigue properties he is concerned with microstructural characterization by means of in situ investigations inside the SEM.

    EMAIL logo
    , J. Heermant

    Johannes Heermant works as Student Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since July 2022. In the course of this investigation he was responsible for the image segmentation and 3D reconstruction of the 3D void and manganese sulfide distributions.

    , J. L. Otto , K. Donnerbauer , M. Macias Barrientos and F. Walther
Published/Copyright: August 21, 2024
Become an author with De Gruyter Brill

Abstract

As climate change and resource scarcity intensify, the need for energy efficiency, emissions reduction, and resource conservation grows. Forming technology offers significant potential for light weighting, cost and resource efficiency. However, current component design often neglects forming-related damage, such as voids, focusing primarily on mechanical properties and safety factors. Integrating knowledge of these voids into the design process can improve efficiency and increase light weighting potential. Advanced scanning electron methods, such as electron contrast channeling imaging, evaluated forming-induced damage and correlated it with fatigue properties. Crack initiation occurred mainly near manganese sulfide inclusions or near-surface voids, influencing crack propagation. Analyzing void distribution using advanced secondary electron methods enabled the development of a 3D volume model.

Kurzfassung

Vor dem Hintergrund des sich intensivierenden Klimawandels und der sich verschärfenden Ressourcenknappheit gewinnen Energieeffizienz, Emissionsminderung und Ressourcenschonung immer mehr an Bedeutung. Die Umformungstechnik bietet erhebliches Potenzial für Gewichtsreduzierung, Kosteneinsparung und Ressourceneffizienz. Beim aktuellen Bauteildesign werden umforminduzierte Schädigungen wie Poren allerdings häufig außer Acht gelassen und der Schwerpunkt auf die mechanischen Eigenschaften und Sicherheitsfaktoren gelegt. Wird das Wissen um diese Poren beim Bauteildesign genutzt, können so die Effizienz gesteigert und das Potenzial für Gewichtseinsparungen erhöht werden. Mit auf Sekundärelektronen beruhenden Techniken wie dem Electron Contrast Channeling wurden umformungsinduzierte Schädigungen beurteilt und mit Ermüdungseigenschaften korreliert. Risse bildeten sich hauptsächlich in der Nähe von Mangansulfideinschlüssen oder oberflächennahen Poren, die die Rissausbreitung beeinflussten. Auf Grundlage der Analyse der Porenverteilung mithilfe fortschrittlicher, auf Sekundärelektronen basierender Techniken konnte ein 3D-Volumenmodell entwickelt werden.

About the authors

L. A. Lingnau

Lars Andree Lingnau works as Scientific Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since May 2022. Besides the investigation of the influence of forming-induced ductile damage on the fatigue properties he is concerned with microstructural characterization by means of in situ investigations inside the SEM.

J. Heermant

Johannes Heermant works as Student Assistant at the Chair of Materials Test Engineering (WPT) of the TU Dortmund University since July 2022. In the course of this investigation he was responsible for the image segmentation and 3D reconstruction of the 3D void and manganese sulfide distributions.

5

5 Acknowledgments

The authors gratefully acknowledge the funding by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for the subprojects C01 and B01 within the Collaborative Research Center CRC/Transregio 188 “Damage-controlled forming processes" (project no. 278868966). The authors further thank the DFG and the Ministry of Culture and Science of North Rhine-Westphalia (Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen, NRW) for their financial support within the Major Research Instrumentation Program for the FIB-SEM (project no. 386509496).

5

5 Danksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung der Teilprojekte C01 und B01 im Sonderforschungsbereich SFB/Transregio 188 „Schädigungskontrollierte Umformprozesse“ (Projektnummer 278868966). Die Autoren danken außerdem der DFG und dem Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen (NRW) für ihre finanzielle Unterstützung im Rahmen des Forschungsgroßgeräteprogramms für das FIB-REM (Projektnummer 386509496).

References / Literatur

[1] Tekkaya, A. E.; Bouchard, P.-O.; Bruschi, S.; Tasan, C. C.: Damage in metal forming.” CIRP Annals Vol. 69 (2020) 2, pp. 600–623. 10.1016/j.cirp.2020.05.005.Search in Google Scholar

[2] Koplik, J.; Needleman, A.: Void growth and coalescence in porous plastic solids. International Journal of Solids and Structures 24 (1988) 8, pp. 835–853. 10.1016/0020-7683(88)90051-0.Search in Google Scholar

[3] Hering, O.; Tekkaya, A. E.: Damage-induced performance variations of cold forged parts. Journal of Materials Processing Technology 279 (2020), p. 116556. 10.1016/j.jmatprotec.2019.116556.Search in Google Scholar

[4] Meya, R.; Löbbe, C.; Tekkaya, A. E.: Stress state control by a novel bending process and its effect on damage and product performance. Journal of Manufacturing Science and Engineering 141 (2019) 10. 10.1115/1.4044394.Search in Google Scholar

[5] Chou, K. J. C.; Earthman, J. C.: Characterization of low-cycle fatigue damage in Inconel 718 by laser light scanning. Journal of Materials Research 12 (1997) 8, pp. 2048–2056. 10.1557/JMR.1997.0275.Search in Google Scholar

[6] Shankar, V.; Mariappan, K.; Sandhya, R.; Laha, K.: Understanding low cycle fatigue and creep-fatigue interaction behavior of 316 L(N) stainless steel weld joint. International Journal of Fatigue 82 (2016), pp. 487–496. 10.1016/j.ijfatigue.2015.09.003.Search in Google Scholar

[7] Beretta, S.; Foletti, S.; Valiullin, K.: Fatigue strength for small shallow defects/cracks in torsion. International Journal of Fatigue 33 (2011) 3, pp. 287–299. 10.1016/j.ijfatigue.2010.08.014.Search in Google Scholar

[8] Zapara, M.; Augenstein, E.; Helm, D.: Prediction of damage in cold bulk forming processes. PAMM Proceedings in Applied Mathematics and Mechanics 14 (2014) 1. 10.1002/pamm.201410492Search in Google Scholar

[9] Lingnau, L. A.; Walther, F.: Characterization and separation of damage mechanisms of extruded case-hardening steel AISI 5115 under cyclic axial-torsional loading. Trans Tech Publications Ltd (2023). 10.4028/p-kJ0mH5Search in Google Scholar

[10] Murakami, Y.; Takahashi, K.: Torsional fatigue of medium carbon steel containing an initial small surface crack introduced by tension-compression fatigue: Crack branching, non-propagation and fatigue limit.” Fatigue & Fracture of Engineering Materials & Structures 21 (1998) 12, pp. 1473–1484. 10.1046/j.1460-2695.1998.00128.x.Search in Google Scholar

[11] Mohring, K.; Walther, F.: Forming stress-induced initial damage in case hardening steel 16MnCrS5 under cyclic axial loading in LCF regime. Springer International Publishing, Procedia Structural Integrity 24 (2022), pp. x267-273. 10.1007/978-3-030-97822-8_31Search in Google Scholar

[12] Mohring, K.; Walther, F.: Performance-related characterization of forming-induced initial damage in 16MnCrS5 steel under a torsional forward-reverse loading path at LCF regime. Materials 13 (2020) 11. 10.3390/ma13112463.Search in Google Scholar PubMed PubMed Central

[13] Otto, J. L.; Sauer, L. M.; Brink, M.; Schaum, T.; Lingnau, L. A.; Macias Barrientos, M.; Walther, F.: A 2D and 3D segmentation-based microstructure study on the role of brittle phases in diffusion brazed AISI 304L/NiCrSiFeMoB joints. Materials & Design 235 (2023), p. 112401. 10.1016/j.matdes.2023.112401.Search in Google Scholar

Received: 2024-06-07
Accepted: 2024-06-26
Published Online: 2024-08-21
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2024-0061/html
Scroll to top button