Home Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
Article
Licensed
Unlicensed Requires Authentication

Utilizing nano-computed tomography to characterize the structural nature of industrial minerals

  • A. Razavi

    Anita Razavi received a bachelor’s degree in Medical Technology from the Koblenz University of Applied Sciences and a master’s degree in applied physics at the University of Koblenz-Landau. Subsequently, she began her PhD in the field of X-ray computed tomography in the refractory industry.

    EMAIL logo
    , A. Stein

    Alena Stein studied Mathematics and Chemistry at the University of Koblenz-Landau. She then worked there as a research assistant and completed her PhD in the field of raw material processing in July 2023. Since August 2023, she has been working as a project manager at the Research Institute for Glass and Ceramics (FGK).

    and P. Quirmbach
Published/Copyright: August 21, 2024
Become an author with De Gruyter Brill

Abstract

X-ray computed tomography (XRT) is a nondestructive and thus reproducible examination method allowing the three-dimensional (3D) investigation of the internal and external structures of objects regardless of their material and geometry. In the present study, XRT was used to investigate the influence of hydrochloric acid leaching on the composition and constitution of iron-rich bauxite grains.

Reducing the iron content in raw bauxites by acid leaching is a promising method for the beneficiation of iron-rich bauxites for subsequent use in the refractory industry. Not only the effect of the leaching process on the chemical composition of the bauxites, but also aspects such as the acid’s influence on the mineralogical composition and the resulting porosity of the individual grains have hardly been taken into account so far. To address these issues, various bauxites were examined before and after acid leaching using XRT analysis and specifically characterized with regard to their constitution.

Kurzfassung

Die Röntgen-Computertomographie (XRT) ist eine zerstörungsfreie und damit reproduzierbare Untersuchungsmethode, mit der innere und äußere Strukturen von Objekten, unabhängig von ihrem Material und ihrer Geometrie, dreidimensional (3D) untersucht werden können. In der vorliegenden Arbeit wurde die XRT genutzt, um gezielt den Einfluss einer Salzsäurelaugung eisenreicher Bauxite auf die Kornzusammensetzung und -konstitution des Rohstoffs zu untersuchen.

Die Säurelaugung zur Reduzierung des Eisengehaltes in Roh-Bauxiten stellt eine vielversprechende Methode zur Aufbereitung von eisenreichen Bauxiten für den späteren Einsatz in der Feuerfestindustrie dar. Neben der Auswirkung des Laugungsprozesses auf die chemische Zusammensetzung der Bauxite wurden bisher Aspekte wie der Einfluss der Säure auf die mineralogische Zusammensetzung und die resultierende Porosität der einzelnen Körner kaum berücksichtigt. Um dies zu untersuchen, wurden verschiedene Bauxite vor und nach ihrer Säurelaugung mittels XRT-Analyse untersucht und gezielt auf deren Konstitution hin charakterisiert.

About the authors

A. Razavi

Anita Razavi received a bachelor’s degree in Medical Technology from the Koblenz University of Applied Sciences and a master’s degree in applied physics at the University of Koblenz-Landau. Subsequently, she began her PhD in the field of X-ray computed tomography in the refractory industry.

A. Stein

Alena Stein studied Mathematics and Chemistry at the University of Koblenz-Landau. She then worked there as a research assistant and completed her PhD in the field of raw material processing in July 2023. Since August 2023, she has been working as a project manager at the Research Institute for Glass and Ceramics (FGK).

References / Literatur

[1] Buzug, T. M.: Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion, 1. Aufl. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.Search in Google Scholar

[2] armignato, S.; Dewulf, W.; R. Leach: Industrial X-Ray Computed Tomography. Cham: Springer International Publishing, 2018. 10.1007/978-3-319-59573-3Search in Google Scholar

[3] Phillips, D. H.; Lannutti, J. J.: Measuring physical density with X-ray computed tomography. NDT & E International 30 (1997) 6, S. 339–350. 10.1016/S0963-8695(97)00020-0.Search in Google Scholar

[4] Romans, L. E.: Computed tomography for technologists: A comprehensive text. Philadelphia, Pa.: Wolters Kluwer/Lippincott Williams & Wilkins, 2011.Search in Google Scholar

[5] European Commission: Study on the EU’s list of Critical Raw Materials (2020): Factsheets on Critical Raw Materials. 10.2873/92480.Search in Google Scholar

[6] Bárdossy, G.: Karst Bauxites: Bauxite Deposits on Carbonate Rocks. Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, 1982.Search in Google Scholar

[7] Bárdossy, G.; Aleva, G. J. J.: Lateritic Bauxites. Amsterdam, Oxford, New York, Tokyo: Elsevier, 1990.Search in Google Scholar

[8] Niggli, P.; Niggli, E.: Gesteine und Minerallagerstätten: Zweiter Band: Exogene Gesteine und Minerallagerstätten. Basel: Birkhäuser, 1952. 10.1007/978-3-0348-7173-0Search in Google Scholar

[9] Arnold, B.: Von Rubinen und Implantaten: Aluminiumoxid und seine vielfältige Welt. Berlin: Springer, 2018. 10.1007/978-3-662-56027-3Search in Google Scholar

[10] Sukla, L. B.; Pattanaik, A.; Pradhan, D.: Advances in Beneficiation of Low-Grade Bauxite. In: The Minerals, Metals & Materials Series, Light Metals 2019, C. Chesonis, Hg., Cham, Schweiz: Springer (2019), S. 3–10. 10.1007/978-3-030-05864-7_1.Search in Google Scholar

[11] Meyer, F. M.: Availability of Bauxite Reserves. Natural Resources Research 13 (2004) 3, S. 161–172. 10.1023/B:NARR.0000046918.50121.2e.Search in Google Scholar

[12] Schönwelski, W.: Possible Solutions for the global shortage of refractory bauxite. Refractories Worldforum 1 (2009) 1, S. 17–19.Search in Google Scholar

[13] Schulle, W.: Feuerfeste Werkstoffe: Feuerfestkeramik. Eigenschaften, prüftechnische Beurteilung, Werkstofftypen, 1. Aufl. Leipzig: Deutscher Verlag für Grundstoffindustrie, 1990.Search in Google Scholar

[14] Routschka, G.; Wuthnow, H.: Praxishandbuch Feuerfeste Werkstoffe: Aufbau – Eigenschaften – Prüfung, 5. Aufl. Essen: Vulkan-Verlag, 2011.Search in Google Scholar

[15] Kuys, K.; Ralston, J.; Smart, R.; Sobieraj, S.; Wood, R.; Turner, P. S.: Surface characterisation, iron removal and enrichment of bauxite ultrafines. Minerals Engineering 3 (1990) 5, S. 421–435. 10.1016/0892-6875(90)90036-B.Search in Google Scholar

[16] Rao, R. B.; Besra, L.; Reddy, B. R.; Banerjee, G. N.: The Effect of Pretreatment on Magnetic Separation of Ferruginous Minerals in Bauxite. Magnetic and Electrical Separation 8 (1997) 2, S. 115–123. 10.1155/1997/53574.Search in Google Scholar

[17] Valeev, D. et al.: Mechanism and kinetics of iron extraction from high silica boehmite-kaolinite bauxite by hydrochloric acid leaching. Transactions of Nonferrous Metals Society of China 31 (2021) 10, S. 3128–3149. 10.1016/S1003-6326(21)65721-7.Search in Google Scholar

[18] Stein, A.; Sax, A.; Quirmbach, P.: Iron leaching from nonrefractory grade bauxite: Individual process optimization and prediction by using DOE. International Journal of Ceramic Engineering & Science 4 (2022) 2, S. 112–118. 10.1002/ces2.10117.Search in Google Scholar

[19] Swain, R.; Rao, R. B.: Kinetic study on leaching of iron in Partially Laterised Khondalite rocks for ceramic industrial applications: International Journal of Mineral Processing 112–113 (2012), S. 77–83. 10.1016/j.minpro.2012.06.003.Search in Google Scholar

[20] Reddy, B.; Mishra, S.; Banerjee, G.: Kinetics of leaching of a gibbsitic bauxite with hydrochloric acid. Hydrometallurgy 51 (1999) 1, S. 131–138. 10.1016/S0304-386X(98)00075-9.Search in Google Scholar

[21] Gülfen, G.; Gülfen, M.; Aydin, A. O.: Dissolution kinetics of iron from diasporic bauxite in hydrochloric acid solution (en_US). Indian Journal of Chemical Technology 13 (2006), S. 386–3904.Search in Google Scholar

[22] Dissanayake, D.; Mantilaka, M.; de Silva, R. T.; de Silva, K.; Pitawala, H.: Laterite and its potential as an alternative-bauxite. Cleaner Materials 1 (2021), S. 100016. 10.1016/j.clema.2021.100016.Search in Google Scholar

[23] Cui, L.; Guo, Y.; Wang, X.; Du, Z.; Cheng, F.: Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid. Chinese Journal of Chemical Engineering 23 (2015) 3, S. 590–596. 10.1016/j.cjche.2014.05.017.Search in Google Scholar

[24] Razavi, A.; Stein, A.; Quirmbach, P.: Tomographic Imaging of Bauxite Grains Leached Using Hydrochloric Acid. Minerals 13 (2023) 7, S. 884. 10.3390/min13070884.Search in Google Scholar

[25] Demtröder, W.: Experimentalphysik 4: Kern-, Teilchen- und Astrophysik, 5. Aufl. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.Search in Google Scholar

Received: 2024-06-10
Accepted: 2024-07-16
Published Online: 2024-08-21
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2024-0067/html
Scroll to top button