Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
-
C. Siemers
Carsten Siemers Senior research scientist at Technische Universität Braunschweig, Institute for Materials Science (IfW) and head of the Titanium Research Group. Since 2012: Chairman of the DGM Titanium Technical Experts’ Committee. 2027: Conference Chair of the Titanium World Conference Ti-2027 in Berlin, Germany., S. Sternberg
Simone Sternberg Senior technical assistant at Technische Universität Braunschweig, Institute for Materials Science (IfW) and since 2021 head of the Metallography Laboratory (preparation and analytics). Professional education as a material tester in 1987 at Institute of Joining and Welding of TU Braunschweig.
Abstract
Owing to their specific property profile, titanium materials are particularly used in aerospace and medical technology applications. Highly β-stabilized titanium alloys are becoming more and more important for they can be strengthened by martensite decomposition and/or precipitation hardening, thus allowing the property profile to be adapted to the respective application. Not only α and β phase can occur in the respective alloys, but also the α’, α” or ω phase. The sample preparation is particularly problematic when high fractions of α” and β phase are present. They are characterized by a very low stiffness and strength, thus tending to form smear and deformation layers. Three examples will be quoted to describe the sample preparation of titanium materials with a high proportion of β-stabilizers (niobium, molybdenum, and tantalum) and various micrographs will be shown.
Kurzfassung
Titanwerkstoffe werden aufgrund ihres besonderen Eigenschaftsprofils insbesondere in der Luftfahrt und der Medizintechnik eingesetzt. Dabei gewinnen hoch β-stabilisierte Titanlegierungen immer mehr an Bedeutung, da sich diese durch einen Martensitzerfall und/oder durch eine Ausscheidungshärtung verfestigen lassen, um das Eigenschaftsprofil an die jeweilige Anwendung anzupassen. Neben der α- und β-Phase können dabei in den entsprechenden Legierungen die α‘-, α“- oder die ω-Phase auftreten. Die Probenpräparation ist insbesondere beim Auftreten hoher Anteile von α“- und β-Phase problematisch, da diese sehr niedrige Steifigkeiten und Festigkeiten besitzen und daher zur Ausbildung von Schmier- und Verformungsschichten neigen. Anhand von drei Beispielen wird die Probenpräparation von Titanwerkstoffen mit hohem Anteil an β-Stabilisatoren (Niob, Molybdän und Tantal) erklärt und es werden verschiedene Gefügeaufnahmen gezeigt.
About the authors
Carsten Siemers Senior research scientist at Technische Universität Braunschweig, Institute for Materials Science (IfW) and head of the Titanium Research Group. Since 2012: Chairman of the DGM Titanium Technical Experts’ Committee. 2027: Conference Chair of the Titanium World Conference Ti-2027 in Berlin, Germany.
Simone Sternberg Senior technical assistant at Technische Universität Braunschweig, Institute for Materials Science (IfW) and since 2021 head of the Metallography Laboratory (preparation and analytics). Professional education as a material tester in 1987 at Institute of Joining and Welding of TU Braunschweig.
4 Acknowledgements
The work presented in section 2.2 was funded by the Federal Ministry of Education and Research, BMBF, Germany, project number 13XP5093C. The results presented in section 2.3 also receive funding from the BMBF, project number 13XP5201D. The authors would like to thank GfE Metalle und Materialien in Nuremberg for the manufacture of the alloy Ti-13Nb-13Zr, the Hanseatische Waren Handelsgesellschaft in Bremen for the manufacture of the alloy Ti-36Nb-2Ta-3Zr-0.3O, and AdvantIQx Dr. Johannes Scherer in Gersthofen for supporting the project.
4 Danksagung
Die Arbeiten, die in Abschnitt 2.2. vorgestellt wurden, wurden durch das BMBF (Bundesministerium für Bildung und Forschung, Deutschland), Projektnummer 13XP5093C gefördert. Die Ergebnisse, die in Abschnitt 2.3 dargestellt sind, erhalten ebenfalls eine Förderung durch das BMBF, Projektnummer 13XP5201D. Die AutorInnen danken der GfE Metalle und Materialien in Nürnberg für die Herstellung der Legierung Ti-13Nb-13Zr, der Firma Hanseatische Waren Handelsgesellschaft in Bremen für die Herstellung der Legierung Ti-36Nb-2Ta-3Zr-0,3O und der Firma AdvantIQx Dr. Johannes Scherer in Gersthofen für die Projektunterstützung.
References / Literatur
[1] Lütjering, G.; Williams, J. C.: Titanium, Springer, Berlin, Germany, 2007. 10.1007/978-3-540-73036-1Search in Google Scholar
[2] Siemers, C.; Haase, F.; Klinge, L.: CIM Journal 14 (2023) 3, pp. 158–168. 10.1080/19236026.2023.2175417Search in Google Scholar
[3] Boyer, R.; Welsch, G.; Collings E. W. (eds.): Materials Properties Handbook – Titanium Alloys, ASM International, Materials Park, OH, USA, 1994.Search in Google Scholar
[4] Sibum, H.; Güther, V.; Roidl, O.; Habashi, F.; Wolf, H. U.; Siemers, C.: Titanium, Titanium Alloys, and Titanium Compounds, 2017. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, Germany, 2017. 10.1002/14356007.a27_095.pub2Search in Google Scholar
[5] Siemers, C.; Klinge, L.; Merz, E.; Haase, F.; Kluy, L.; Spiegel, C.; Tabel, J. T.: Advanced Titanium Alloys with Tailored Properties for Challenging Applications, in: Proc. of the COM 2024, Halifax, Canada, 2024, D. Fillippou (Ed.), in print.10.1007/978-3-031-67398-6_270Search in Google Scholar
[6] Klinge, L.; Kluy, L.; Spiegel, C.; Siemers, C.; Groche, P.; Coraça-Huber, D.: Frontiers in Bioengineering and Biotechnology 11 (2023), p. 1255947. 10.3389/fbioe.2023.1255947Search in Google Scholar PubMed PubMed Central
[7] Klinge, L.; Siemers, C.; Kluy, L.; Groche, P.: Journal of Materials Research 37 (2022), pp. 2581–2588. 10.1557/s435.78-022-00587-1Search in Google Scholar
[8] Talking, R. J.; Dashwood, R. J.; Jackson, M.; Dye, D.: Acta Materialia 57 (2009) 4, pp. 1188–1198. 10.1016/j.actamat.2008.11.013Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary