In situ stereomicroscopy chemical and color etching
-
O. Ambrož
Ondřej Ambrož is a PhD candidate at BUT. After completing his master’s degree in foundry technology, he was employed at the ŽĎAS steelworks as a melter-operator-metallurgist. Since 2018 he has been working at the ISI of the CAS where he is responsible for all metallographic operations and development of new methods., J. Čermák
Jan Čermák is a PhD student at BUT and member of the Microscopy for Materials Science group at ISI. As a graduate in robotics, he integrates process automation in the metallography laboratory and in current research he deals with the application of deep learning methods for AHSS microstructure characterization.
Abstract
In the field of materials analysis, chemical etching continues to play a crucial role in sample preparation, yet its approach is often more empirical. While classical metallographic methods dominate, insufficient understanding of the process creates room for innovation. To improve this situation, the development of new techniques allowing for structure observation during sample preparation is necessary. This is a critical step towards mitigating the influence of stochastic factors, thereby increasing the reliability and predictability of the outcomes. For real-time structural analysis during sample preparation, professional equipment was recently introduced. This contribution aims to verify in situ monitoring of structure during chemical etching using common laboratory equipment and a stereomicroscope with a camera and tablet. The method may encounter limitations due to the magnification and resolution capabilities of the stereomicroscope. Manipulation with a pipette and the risk of lens contamination with etchant can also be challenging. Additionally, etching in deeply dark etchants and ensuring adequate stirring of the etchant can be difficult. Nevertheless, this method offers new possibilities and can be beneficial for certain applications. To achieve a more comprehensive understanding, experiments with various materials and etchants are important to better grasp the limitations and possibilities of this innovative technique.
Kurzfassung
Im Bereich der Werkstoffanalyse spielt das chemische Ätzen weiterhin eine entscheidende Rolle bei der Probenvorbereitung, auch wenn der Ansatz in vielen Fällen auf Erfahrungswerten beruht. Obwohl klassische metallographische Methoden dominieren, ist der Prozess noch nicht vollständig verstanden und bietet daher Raum für Innovationen, so z. B. die Entwicklung neuer Methoden zur Gefügebetrachtung während der Probenpräparation. Dies ist ein entscheidender Schritt, um den Einfluss stochastischer Faktoren zu minimieren und damit die Zuverlässigkeit und Vorhersagbarkeit von Ergebnissen zu erhöhen. Für die Gefügeanalyse in Echtzeit im Zuge der Probenpräparation wurden kürzlich professionelle Systeme vorgestellt. Ziel dieses Beitrags ist es zu zeigen, dass die In-situ-Betrachtung des Gefüges während des chemischen Ätzens mit gängigen Laborinstrumenten und einem Stereomikroskop mit angeschlossener Kamera und Tablet-Computer möglich ist. Aufgrund der Vergrößerung und Auflösung des Stereomikroskops können dieser Methode allerdings Grenzen gesetzt sein. Die Arbeit mit der Pipette und das Risiko, die Linse mit dem Ätzmittel zu verunreinigen, können ebenfalls Herausforderungen darstellen. Auch kann das Ätzen mit sehr dunklen Ätzmitteln und solchen, die ausreichend in Bewegung gehalten werden müssen, schwierig sein. Dennoch eröffnet diese Methode neue Möglichkeiten und kann bei bestimmten Anwendungen gewisse Vorteile bieten. Zur Erlangung eines umfassenderen Verständnisses wurden Experimente mit verschiedenen Werkstoffen und Ätzmitteln durchgeführt, was einen wichtigen Schritt darstellt, um die Grenzen und Möglichkeiten dieser innovativen Methode näher aufzuzeigen.
About the authors
Ondřej Ambrož is a PhD candidate at BUT. After completing his master’s degree in foundry technology, he was employed at the ŽĎAS steelworks as a melter-operator-metallurgist. Since 2018 he has been working at the ISI of the CAS where he is responsible for all metallographic operations and development of new methods.
Jan Čermák is a PhD student at BUT and member of the Microscopy for Materials Science group at ISI. As a graduate in robotics, he integrates process automation in the metallography laboratory and in current research he deals with the application of deep learning methods for AHSS microstructure characterization.
5 Acknowledgment
The authors express their gratitude to the scientific groups Laser Technology and Thin Layers at the Institute of Scientific Instruments of the Czech Academy of Sciences for providing the samples. The authors acknowledge the funding received from the Lumina Quaeruntur fellowship established by the Czech Academy of Sciences (LQ100652201).
5 Danksagung
Die Autoren danken den wissenschaftlichen Gruppen für Lasertechnik und Dünne Schichten des Instituts für Gerätetechnik der Akademie der Wissenschaften der Tschechischen Republik (Czech Academy of Sciences), die die Proben zur Verfügung gestellt haben. Die Autoren bedanken sich außerdem für die finanzielle Unterstützung im Rahmen des Stipendiums Lumina Quaeruntur, das von der Akademie der Wissenschaften der Tschechischen Republik vergeben wurde (LQ100652201).
References / Literatur
[1] Vander Voort, G.: Metallography, principles and practice, ASM International, 1999, pp. 166–172.Search in Google Scholar
[2] Laub, M.; Bachmann, B.-I.; Detemple, E.; Scherff, F.; Staudt, T.; Müller, M.; Britz, D.; Mücklich, F.; Motz, C.: Determination of grain size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning Pract. Metallogr. 60 (2022), pp. 4–36. 10.1515/pm-2022-1025Search in Google Scholar
[3] Ambrož, O.; Čermák, J.; Jozefovič, P.; Mikmeková, Š.: Effects of etchant stirring on the surface quality of the metallography sample J. Phys. Conf. Ser. 2572 (2023), 012011. 10.1088/1742-6596/2572/1/012011Search in Google Scholar
[4] Angeli, J.; Füreder, E.; Panholzer, M.; Kneissl, A. C.: Ätztechniken für die Phasencharakterisierung von niedriglegierten Dual-Phasen- und TRIP-Stählen Pract. Metallogr. 43 (2006), pp. 489–504. 10.3139/147.100315Search in Google Scholar
[5] Reisinger, S.; Ressel, G.; Eck, S.; Marsoner, S.: Differentiation of grain orientation with corrosive and colour etching on a granular bainitic steel Micron 99 (2017), pp. 67–73. 10.1016/j.micron.2017.04.002Search in Google Scholar PubMed
[6] Britz, D.; Hegetschweiler, A.; Mücklich, F.: Opening the Door to Fundamental Understanding of Structure and Color Metallography– a Correlative Microscopy Study on Steel Microsc. Microanal. 20 (2014), pp. 834–835. 10.1017/S1431927614005893Search in Google Scholar
[7] Britz, D.; Hegetschweiler, A.; Roberts, M.; Mücklich, F.: Reproducible Surface Contrasting and Orientation Correlation of Low-Carbon Steels by Time- Resolved Beraha Color Etching Mater. Perform. Charact. 5 (2016), pp. 553–563. 10.1520/MPC20160067Search in Google Scholar
[8] Bonyár, A.; Renkó, J.; Kovács, D.; Szabó, P. J.: Understanding the mechanism of Beraha-I type color etching: Determination of the orientation dependent etch rate, layer refractive index and a method for quantifying the angle between surface normal and the 〈100〉, 〈111〉 directions for individual grains Mater. Charact. 156 (2019), 109844. 10.1016/j.matchar.2019.109844Search in Google Scholar
[9] Harkness, J. C.; Guha, A.: Metallography and Microstructures of Beryllium, Copper-Beryllium, and Nickel-Beryllium Alloys, Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, 2004, pp. 752–761. 10.31399/asm.hb.v09.a0003770Search in Google Scholar
[10] Pervaz Ahmed, M.; Siddhi Jailani, H.; Rasool Mohideen, S.; Rajadurai, A.: Effect of Cryogenic Treatment on Microstructure and Properties of CuBe2 Metallogr. Microstruct. Anal. 5 (2016), pp. 528–535. 10.1007/s13632-016-0314-9Search in Google Scholar
[11] Scott, D. A.: Metallography and Microstructure in Ancient and Historic Metals, The J. Paul Getty Trust, 1991, pp. 25–29.Search in Google Scholar
[12] Nadolski, M.: The Evaluation of Mechanical Properties of High-tin Bronzes Arch. Foundry Eng. 17 (2017), pp. 127–130. 10.1515/afe-2017-0023Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary