Use of mobile metallography to assess the extent of damage to high temperature components in power plants
-
R. Scheck
Rudi Scheck Rudi Scheck has been working for over 40 years as an experienced metallographer and for over 30 years as head of metallography at the Materials Testing Institute at the University of Stuttgart. Main focus: Heatresistant steels and nickel-based alloys. Winner of DGM “Best Paper Award 2016 and 2022” and Metallography Award 2021. Head of the advanced training courses “Metallographic examination methods” and “Failure analysis and prevention” at the TAE Esslingen and the DGM (“Component metallography – mobile metallography”), K. Maile
Karl Maile Apl. Prof. Dr.-Ing. habil. Karl Maile was Deputy Director of the Materials Testing Institute at the University of Stuttgart (MPA). Main focus of activities: Materials technology, component qualification and evaluation, failure analysis and quality assurance. Head of international/national specialist conferences and training events.
Abstract
Microstructural replicas are used in recurrent testing of hot, pressuriszed components to detect creep damage. The test location must be representative of the damage development and subsequent component failure. Poor preparation leads to the formation of artefacts which are considered in the damage assessment. The assessment is subject to method and operator variability. When assessing the life of components based on microstructure replicas, these must be taken into account and, if necessary, extended stress calculations for the component must be used.
Kurzfassung
Gefügeabdrücke werden bei wiederkehrenden Prüfungen von warmgehenden, druckführenden Bauteilen zur Erkennung von Kriechschädigung eingesetzt. Der Prüfort muss für die Schädigungsentwicklung und das spätere Versagen des Bauteils repräsentativ sein. Schlechte Präparation führt zur Bildung von Artefakten, die sich in der Bewertung des Schädigungszustandes niederschlagen. Die Auswertung weist methoden- und personenbedingte Streuungen auf. Bei der Bewertung der Lebensdauer von Bauteilen auf der Grundlage der Gefügeabdrücke sind diese zu berücksichtigen und ggf. erweiterte Spannungsberechnungen für das Bauteil heranzuziehen.
About the authors
Rudi Scheck Rudi Scheck has been working for over 40 years as an experienced metallographer and for over 30 years as head of metallography at the Materials Testing Institute at the University of Stuttgart. Main focus: Heatresistant steels and nickel-based alloys. Winner of DGM “Best Paper Award 2016 and 2022” and Metallography Award 2021. Head of the advanced training courses “Metallographic examination methods” and “Failure analysis and prevention” at the TAE Esslingen and the DGM (“Component metallography – mobile metallography”)
Karl Maile Apl. Prof. Dr.-Ing. habil. Karl Maile was Deputy Director of the Materials Testing Institute at the University of Stuttgart (MPA). Main focus of activities: Materials technology, component qualification and evaluation, failure analysis and quality assurance. Head of international/national specialist conferences and training events.
References / Literatur
[1] Druckgeräterichtlinie (DGRL-PED): RICHTLINIE 2014/68/EU des Europäischen Parlaments und des Rates vom 15. Mai 2014 zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Druckgeräten auf dem Markt.Search in Google Scholar
[2] Gesetz über die Bereitstellung von Produkten auf dem Markt – Produktsicherheitsgesetz – ProdSG (früher: Geräte- und Produktsicherheitsgesetz (GPSG)); https://www.gesetze-im-internet.de/prodsg_2021/index.htmlSearch in Google Scholar
[3] Gesetz über überwachungsbedürftige Anlagen (ÜAnlG); https://www.gesetze-im-internet.de/_anlg/index.htmlSearch in Google Scholar
[4] Bührer, S.: Bewertung der Zeitstandschädigung in warmfesten Stählen. Dissertation Universität Stuttgart 1998.Search in Google Scholar
[5] Maile, K.: Fortgeschrittene Verfahren zur Beschreibung des Verformungs- und Schädigungsverhaltens von Hochtemperaturbauteilen im Kraftwerksbau. Habilitationsschrift D93 Universität Stuttgart. Shaker Verlag Aachen, 1999.Search in Google Scholar
[6] An Informed Perspective on the Application of Replication in an Integrated Approach to the Life Management of 9 %Cr Creep Strength Enhanced Ferritic Steel Components. EPRI 2018. https://www.epri.comSearch in Google Scholar
[7] Wasserrohrkessel und Anlagenkomponenten – Teil 4: Betriebsbegleitende Berechnung der Lebensdauererwartung; Deutsche Fassung EN 12952-4:2011. Beuth Verlag GmbH, 10772 Berlin.Search in Google Scholar
[8] Puchner, K.: Erfassung von Zeitstandschäden an Schweißverbindungen mittels Ultraschalllaminographie. Dissertation Technischen Universität München, 2006.Search in Google Scholar
[9] Dugan, S.; Knoch, P.; Maile, K.; Waidele, H.: Zerstörungsfreier Prüfnachweis von Werkstoffveränderungen in zeitstandbeanspruchten Kraftwerkskomponenten – Machbarkeitsstudie; MPA Stuttgart 2007. VGB Projekt 269.Search in Google Scholar
[10] Wojcik, A.; Waitt, M.; Santos, A. S.; Shibli, A.: The use of the potential drop technique for creep damage monitoring and end of life warning for high temperature components, Materials at High Temperatures 34 (2017). 10.1080/09603409.2017.1384611.Search in Google Scholar
[11] Pivdiablyk, I.; Di Goh, Z.; Chye, L. K.; Shandro, R.; Lefebvre, F. Residual Creep Life Assessment of High-Temperature Components in Power Industry. Sensors 23 (2023), 2163. 10.3390/s23042163Search in Google Scholar PubMed PubMed Central
[12] A. Shibli: Inspecting Aberrant P91 Components for Integrity, 12/01/2014. https://www.powermag.com.Search in Google Scholar
[13] Richtreihen zur Bewertung der Gefügeausbildung und Zeitstandschädigung warmfester Stähle für Hochdruckrohrleitungen und Kesselbauteile und deren Schweißverbindungen. VGB-S-517-00-2014-11-DE-EN, VGB Power Tech e.V., 2014. ISBN: 978-3-86875-812-2.Search in Google Scholar
[14] ASTM E 1351 – 01 (Reapproved 2012) – Standard practice for production and evaluation of field metallographic replicas.Search in Google Scholar
[15] Maile, K.; Scheck, R.: Einfluss der metallographischen Präparationstechnik auf die Ermittlung der Zeitstandschädigung von 10 % Chrom-Stählen. 11. Internationale Metallographietagung, 11.–13. September 2002 in Leoben, Sonderbände der Praktischen Metallographie 34 (2003), S. 109–116.Search in Google Scholar
[16] Maile, K.; Scheck, R.: Metallographie in Qualitätssicherung und Schadensanalyse – Anleitung zum metallographischen Arbeiten – Methodik und Vorgehensweise. Gebrüder Borntraeger Stuttgart 2019.Search in Google Scholar
[17] Kautz, H.; Maile, K.; Theofel, H.: Untersuchung von Rissbildungen im Bereich von Schweißnähten an einer HD-Leitung aus Werkstoff 14 MoV 63. 8. Vortragsveranstaltung der Arbeitsgemeinschaft warmfeste Stähle und der Arbeitsgemeinschaft Hochtemperaturwerkstoffe, 29. November 1985, DüsseldorfSearch in Google Scholar
[18] Speicher, M.; Scheck, R.: Metallography to go: Mobile metallographic examinations directly on components/Metallographie to go: Mobile metallographische Untersuchungen direkt an Bauteilen. De Gruyter, Pract. Metallogr. 59 (2022) 8–9. 10.1515/pm-2022-0054Search in Google Scholar
[19] Wortel, H. V.: Reliability and Limitations of the Non Destructive Replica Technique for the Assessment of Creep Damage in Welded Components. 8th International Conference on Creep and Fatigue at Elevated Temperatures, ASME: 2007. Paper CREEP 2007-26310., pp. 56-7–572Search in Google Scholar
[20] Maile, K.; Pöllmann, J.; Seliger, P.; Reuter, A.: Kriterien zur Schädigungsbeurteilung von Hochtemperaturbauteilen aus martensitischen 9–11% Cr-Stählen. Abschlussbericht A229, Stiftung Stahlanwendungsforschung. Wirtschaftsverband Stahlbau und Energietechnik, Düsseldorf 2008.Search in Google Scholar
[21] Neubauer, N.; Wedel, U.: Restlife estimation of creeping components by means of replicas, in ASME International Conference on Advances in Life Prediction Methods, D. A. Woodford and J. R. Whitehead, eds. ASME, New York (1983) pp. 307–313.Search in Google Scholar
[22] Viswanathan, R.: Life-assessment technology for fossil power plants. Sadhana 20 (1995) pp. 301–329. 10.1007/BF02747295Search in Google Scholar
[23] Auerkari, P.; Tuurna, S.; Pohja, R.; Vilaca, P.: Classification and evaluation of creep damage observed in replica inspections of high temperature installations. MPA Seminar 2023.Search in Google Scholar
[24] Schubert, J.; Widera, M.; Schimmel, F.: Neue Kriechschädigungsklassifizierung zur Lebensdauerabschätzung für 9-12 % Cr-Stähle als Grundlage zur Überarbeitung des VGB-Standards S517. 46. Vortragsveranstaltung der FWHT am 24. November 2023.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Metallography of tailings from the Mansfeld copper mining area
- Enhancing precision and safety in metallographic sample preparation: Reduce the stochasticity and workload with robotization
- Electropolishing study of metastable austenitic steel AISI 347 for EBSD analyses
- Examinations on small bronze items from the Hallstatt period burial ground at Mitterkirchen in Upper Austria
- In situ stereomicroscopy chemical and color etching
- Quantification of forming-induced damage in case-hardening steel AISI 5115 by advanced SEM methods
- Microstructures of iron meteorites
- Old Woman Meteorite: microstructures, analyses, and stories
- Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- Microstructural changes in the welding of titanium-stabilized steels
- Development of a preparation method for Bronze Age flanged axes
- Challenges and possibilities of the manual metallographic serial sectioning process using the example of a quantitative microstructural analysis of graphite in cast iron
- Effects of heat treatment on the microstructure and corrosion behavior of manganese aluminum bronzes
- Utilizing nano-computed tomography to characterize the structural nature of industrial minerals
- Use of mobile metallography to assess the extent of damage to high temperature components in power plants
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary