Home Hydrogen bonding and π⋅⋅⋅halogen interactions in the crystal structure of bis(theophyllinium) hexachloridoplatinate(IV) monohydrate
Article Open Access

Hydrogen bonding and π⋅⋅⋅halogen interactions in the crystal structure of bis(theophyllinium) hexachloridoplatinate(IV) monohydrate

  • Guido J. Reiss ORCID logo EMAIL logo , Maik Wyshusek , Jana C. Rheinländer and Irina S. Konovalova ORCID logo
Published/Copyright: July 26, 2024

Abstract

C14H20Cl6N8O5Pt, monoclinic, P21/n (no. 14), a = 13.4907(2) Å, b = 13.32240(10) Å, c = 13.8035(2) Å, β = 102.241(1), Z = 4, V = 2424.48(5) Å3, R gt(F) = 0.0256, wR ref(F 2) = 0.0740, T = 290 K.

CCDC no.: 2370674

1 Source of material and general procedures

All chemicals were obtained from commercial sources and used as purchased (Tables 1 and 2).

Table 1:

Data collection and handling.

Crystal: Yellow plate
Size: 0.14 × 0.07 × 0.02 mm
Wavelength:

μ:
Cu Kα radiation (1.54184 Å)

17.3 mm−1
Diffractometer, scan mode:

θ max, completeness:
XtaLAB Synergy,

74.0°, 99 %
N(hkl)measured, N(hkl)unique, R int: 36111, 4890, 0.032
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 4839
N(param) refined: 318
Programs: DIAMOND, 1 CrysAlisPRO, 2 SHELX 3 , 4 , 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Pt1 0.49999 (2) 0.18203 (2) 0.23125 (2) 0.01197 (8)
Cl1 0.46938 (8) 0.08039 (8) 0.35868 (7) 0.0287 (2)
Cl2 0.52633 (7) 0.28561 (6) 0.10376 (6) 0.01848 (18)
Cl3 0.50510 (7) 0.04200 (6) 0.13350 (7) 0.01947 (18)
Cl4 0.67420 (7) 0.17041 (6) 0.29112 (7) 0.01872 (18)
Cl5 0.32720 (7) 0.19171 (7) 0.16946 (7) 0.02033 (19)
Cl6 0.49605 (8) 0.32525 (7) 0.32617 (7) 0.0239 (2)
O1 0.5517 (2) 0.2302 (2) 0.8053 (2) 0.0199 (5)
O2 0.8083 (2) 0.0096 (2) 0.9296 (2) 0.0203 (6)
O3 0.3991 (2) 0.4420 (2) 0.6796 (2) 0.0206 (5)
O4 0.3137 (2) 0.5313 (2) 0.97049 (19) 0.0193 (5)
N1 0.6861 (2) 0.1260 (2) 0.8672 (2) 0.0148 (6)
N2 0.7721 (2) 0.0343 (2) 0.7628 (2) 0.0167 (6)
N3 0.7204 (2) 0.0837 (2) 0.5887 (2) 0.0184 (6)
H31 0.760125 0.044971 0.561845 0.022*
N4 0.6051 (2) 0.1937 (2) 0.6036 (2) 0.0180 (6)
H41 0.557143 0.239412 0.588991 0.022*
N5 0.3575 (2) 0.4908 (2) 0.8252 (2) 0.0155 (6)
N6 0.2195 (2) 0.5993 (2) 0.8293 (2) 0.0158 (6)
N7 0.1354 (2) 0.6604 (2) 0.6646 (2) 0.0166 (6)
H71 0.087387 0.697952 0.680009 0.020*
N8 0.2316 (2) 0.5857 (2) 0.5777 (2) 0.0171 (6)
H81 0.257139 0.565931 0.527295 0.020*
C1 0.6207 (3) 0.1753 (3) 0.7905 (3) 0.0157 (7)
C2 0.7587 (3) 0.0539 (3) 0.8575 (3) 0.0158 (7)
C3 0.7165 (3) 0.0871 (3) 0.6869 (3) 0.0156 (7)
C4 0.6525 (3) 0.1501 (3) 0.5407 (3) 0.0205 (8)
H4 0.640493 0.163702 0.471632 0.025*
C5 0.6444 (3) 0.1547 (3) 0.6971 (3) 0.0155 (7)
C6 0.6742 (3) 0.1478 (3) 0.9692 (3) 0.0207 (8)
H6A 0.626125 0.100066 0.987810 0.031*
H6B 0.648496 0.216256 0.972213 0.031*
H6C 0.740023 0.141407 1.015276 0.031*
C7 0.8467 (3) −0.0406 (3) 0.7459 (3) 0.0232 (8)
H7A 0.899571 −0.007362 0.718630 0.035*
H7B 0.812744 −0.091287 0.698877 0.035*
H7C 0.877397 −0.072998 0.808797 0.035*
C8 0.3464 (3) 0.4931 (3) 0.7223 (3) 0.0148 (7)
C9 0.2975 (3) 0.5403 (3) 0.8799 (3) 0.0144 (7)
C10 0.2070 (3) 0.6064 (3) 0.7295 (3) 0.0144 (7)
C11 0.1523 (3) 0.6453 (3) 0.5729 (3) 0.0169 (7)
H11 0.113188 0.673291 0.513721 0.020*
C12 0.2674 (3) 0.5596 (3) 0.6765 (3) 0.0143 (7)
C13 0.4376 (3) 0.4265 (3) 0.8818 (3) 0.0202 (8)
H13A 0.494049 0.468284 0.915941 0.030*
H13B 0.461749 0.380391 0.836491 0.030*
H13C 0.410440 0.387788 0.930686 0.030*
C14 0.1515 (3) 0.6516 (3) 0.8823 (3) 0.0240 (8)
H14A 0.089726 0.611819 0.878682 0.036*
H14B 0.133739 0.717377 0.851819 0.036*
H14C 0.185648 0.660502 0.951851 0.036*
O1W 0.4628 (3) 0.3273 (2) 0.5431 (2) 0.0324 (7)
H1W 0.457 (5) 0.384 (2) 0.574 (4) 0.049*
H2W 0.463 (5) 0.341 (5) 0.4808 (15) 0.049*

The title compound was synthesized by dissolving 0.18 g (1 mmol) theophylline (180.16 g/mol) and 0.14 PtCl4 (0.5 mmol) in 1 mL concentrated hydrochloric acid. Short-time warming until both components were dissolved, yielded a yellow/orange solution. From the aforementioned solution a large number of block crystals grew upon slow cooling to room temperature within minutes.

The Raman spectra were measured using a Bruker MULTIRAM spectrometer (Nd: YAG-laser at 1064 nm; InGaAs detector) with an apodized resolution of 8 cm−1 in the region of 4000–70 cm−1.

2 Experimental details

A single crystal of the title compound was directly selected from the mother liquor and rapidly transferred to the Xcalibur four-circle diffractometer equipped with an EOS detector. 2 An absorption correction (Gaussian method) was applied. 2 The structure solution and the refinement were successfully carried out using the SHELX program system. 3 , 4 , 5 Pseudosymmetry is present in this structure, as the complex [PtCl6]2− anions almost occupy positions that meet the conditions of a higher symmetry (right part of the figure). 6 , 7

All hydrogen atoms were seen in the Fourier map after all non-hydrogen atoms were located. C-bound hydrogen atoms were included using a riding model. Coordinates of nitrogen- and oxygen bound atoms were refined using distance restraints and individually refined Uiso parameters.

3 Comment

3.1 Introduction

Theophylline is a natural product and was first described by Kossel after its isolation from tea leaves which is responsible for the naming up to now. 8 , 9 There is still a fundamental interest in this compound, the corresponding solid state phases 10 , 11 and its co-crystals. 12 , 13 , 14 , 15 Nowadays theophylline is often used as pharmaceutical agent due to its effects on the respiratory system. 16 , 17 , 18 , 19 We have already shown that methylxanthines like caffeine 20 and especially theophylline 21 , 22 , 23 , 24 are excellent tectons to construct hydrogen bonded networks. A database check (Cambridge Structural database 25 ) showed that not more than about twenty crystal structures have been deposited so far, that contain a theophyllinium cation. From the reaction of theophylline (systematic name: 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) with hydrochloric in the presence of one half of an equivalent of PtCl4, block crystals of the title compound were obtained.

3.2 Structural comments

The asymmetric unit of the title structure consists of two N-protonated theophyllinium cations (TheoH), one hexachloridoplatinate(IV) dianion and one water molecule, which are all located in general positions. Bond lengths within the TheoH cation are all in the expected ranges. 21 , 22 , 23 , 24 The same is true for the hexachloridoplatinate(IV) anion. 26 The TheoH cation I (N1···N4) is connected to three neighboring TheoH cations and one water molecule by NH···O hydrogen bonds (see left part of the figure). The TheoH cation II (N5···N8) accepts one OH···O hydrogen bond from a water molecule and it is involved in hydrogen bonds with three neighboring TheoH cations. The water molecule furthermore donates a OH···Cl hydrogen bond (H···Cl: 2.28(2) Å; O···Cl: 3.121(3) Å; O–H···Cl = 160°). These connections create a network of the cationic sub structure with the flat theophyllinium cations to be oriented perpendicular to each other (see the left part of the Figure). It should not go unmentioned that the C–H group of the five membered ring of each TheoH cation forms a weak hydrogen bond to neigboring hexachloridoplatinate(IV) anions (C4···Cl4: 3.530(4) Å; C11···Cl2: 3.574(4) Å) Finally it should be mentioned that there is a halogen-π interaction between the chlorido ligand Cl3 and the N7 atom of the cation II (3.198(3) Å). All the aforementioned intermolecular interactions create a complex hydrogen bonded framework. In the right part of the figure the packing is shown with view along [001]. It is clearly visible that the TheoH cations are oriented almost perpendicular (82.1°) to each other to create the network including the water molecules.

3.3 Raman spectroscopy

There are three very strong signals in the Raman spectrum at 346, 319 and 163 cm−1 respectively. These signals must be assigned to the [[PtCl6]2− anion and perfectly agree with reported spectra. 27 , 28


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material-und Strukturforschung Chemie, Heinrich-Heine-Universität, Düsseldorf Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Competing interests: The authors declare no conflicts of interest regarding this article.

  3. Research funding: Ministry of Innovation, Science and Research of North–Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533–1, project no. 162659349). I. S. K. thanks the Alexander von Humboldt Foundation and European Commission for her MSCA4Ukraine grant. Finally, funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged.

References

1. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.5.2; Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar

2. Oxford Diffraction: CrysAlisPRO, (version 1.171.33.42)Oxford Diffraction Ltd.: Oxford, UK, 2009.Search in Google Scholar

3. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar PubMed PubMed Central

6. Reiss, G. J. A Reinvestigation of Wilm’s Salt, (NH4)4[RhCl6]NO3 – Structure, Spectroscopy and Thermal Analysis. Z. für Kristallogr. – Cryst. Mater. 2002, 217, 550–556; https://doi.org/10.1524/zkri.217.10.550.20794.Search in Google Scholar

7. Megen, M.; Reiss, G. J. The Pseudosymmetric Structure of Bis(pentane-1,5-Diaminium) Iodide Tris(triiodide). Acta Crystallogr. 2012, E68, o1331–o1332; https://doi.org/10.1107/s1600536812014420.Search in Google Scholar PubMed PubMed Central

8. Kossel, A. Ueber eine neue Base aus dem Pflanzenreich. Ber. Dtsch. Chem. Ges. 1888, 21, 2164; https://doi.org/10.1002/cber.188802101422.Search in Google Scholar

9. Kossel, A. Ueber das Theophyllin, einen neuen Bestandtheil des Thees. Z. Physiolog. Chem. 1889, 13, 298–308; https://doi.org/10.1515/bchm1.1889.13.3.298.Search in Google Scholar

10. Fucke, K.; McIntyre, G. J.; Wilkinson, C.; Henry, M.; Howard, J. A.; Steed, J. W. New Insights into an Old Molecule: Interaction Energies of Theophylline Crystal Forms. Cryst. Growth Des. 2012, 12, 1395–1401; https://doi.org/10.1021/cg201499s.Search in Google Scholar

11. Matsuo, K.; Matsuoka, M. Solid-state Polymorphic Transition of Theophylline Anhydrate and Humidity Effect. Cryst. Growth Des. 2007, 7, 411–415; https://doi.org/10.1021/cg060299i.Search in Google Scholar

12. Darwish, S.; Zeglinski, J.; Krishna, G. R.; Shaikh, R.; Khraisheh, M.; Walker, G. M.; Croker, D. M. A New 1:1 Drug-Drug Cocrystal of Theophylline and Aspirin: Discovery, Characterization, and Construction of Ternary Phase Diagrams. Cryst. Growth Des. 2018, 18, 7526–7532; https://doi.org/10.1021/acs.cgd.8b01330.Search in Google Scholar

13. Wang, L.; Luo, M.; Li, J.; Wang, J.; Zhang, H.; Deng, Z. Sweet Theophylline Cocrystal with Two Tautomers of Acesulfame. Cryst. Growth Des. 2015, 15, 2574–2578; https://doi.org/10.1021/acs.cgd.5b00207.Search in Google Scholar

14. McTague, H.; Rasmuson, A. C. Nucleation of the Theophylline : Salicylic Acid 1:1 Cocrystal. Cryst. Growth Des. 2021, 21, 2711–2719; https://doi.org/10.1021/acs.cgd.0c01594.Search in Google Scholar PubMed PubMed Central

15. Lange, L.; Sadowski, G. Polymorphs, Hydrates, Cocrystals, and Cocrystal Hydrates: Thermodynamic Modeling of Theophylline Systems. Cryst. Growth Des. 2016, 16, 4439–4449; https://doi.org/10.1021/acs.cgd.6b00554.Search in Google Scholar

16. Persson, C. G. A. Overview of Effects of Theophylline. J. Allergy Clin. Immunol. 1986, 78, 780–787; https://doi.org/10.1016/0091-6749(86)90061-8.Search in Google Scholar PubMed

17. Sofian, Z. M.; Benaouda, F.; Wang, J. T. W.; Lu, Y.; Barlow, D. J.; Royall, P. G.; Farag, D. B.; Rahman, K. M.; Al Jamal, K. T.; Forbes, B.; Jones, S. A. A Cyclodextrin Stabilized Spermine Tagged Drug Triplex that Targets Theophylline to the Lungs Selectively in Respiratory Emergency. Adv. Therap. 2020, 5, 2000153. https://doi.org/10.1002/adtp.202000153.Search in Google Scholar PubMed PubMed Central

18. Benaouda, F.; Jones, S. A.; Chana, J.; Dal Corno, B. M.; Barlow, D. J.; Hider, R. C.; Page, C. P.; Forbes, B. Ion-pairing with Spermine Targets Theophylline to the Lungs via the Polyamine Transport System. Mol. Pharm. 2018, 15, 861–870; https://doi.org/10.1021/acs.molpharmaceut.7b00715.Search in Google Scholar PubMed

19. Tanaka, R.; Hattori, Y.; Otsuka, M.; Ashizawa, K. Application of Spray Freeze Drying to Theophylline-Oxalic Acid Cocrystal Engineering for Inhaled Dry Powder Technology. Drug Dev. Ind. Pharm. 2020, 46, 179–187; https://doi.org/10.1080/03639045.2020.1716367.Search in Google Scholar PubMed

20. Merkelbach, J.; Majewski, M. A.; Reiss, G. J. Crystal Structure of Caffeinium triiodide – Caffeine (1/1), C16H21I3N8O4. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 941–944; https://doi.org/10.1515/ncrs-2018-0125.Search in Google Scholar

21. Reiss, G. J. A Cyclic I2−10 Anion in the Layered Crystal Structure of Theophyllinium pentaiodide, C7H9I5N4O2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 737–739; https://doi.org/10.1515/ncrs-2019-0082.Search in Google Scholar

22. Wyshusek, M.; Reiss, G. J.; Frank, W. The Triple Salt 2(C7H9N4O2) [MoOCl4(H2O)]·2(C7H9N4O2)Cl·(H17O8)Cl Containing a C2-Symmetrical Unbranched H+(H2O)8 Zundel Type Species in a Framework Composed of Theophyllinium, Aquatetrachloridooxidomolybdate and Chloride Ions. Z. Anorg. Allg. Chem. 2021, 647, 575–581; https://doi.org/10.1002/zaac.202100007.Search in Google Scholar

23. Reiss, G. J.; Wyshusek, M.; Rheinländer, J. C. An I2−6 Anion in the Crystal Structure of Theophyllinium triiodide monohydrate, C7H11I3N4O3. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 1017–1020; https://doi.org/10.1515/ncrs-2022-0358.Search in Google Scholar

24. Reiss, G. J.; Wyshusek, M. Cones with a Three-fold Symmetry Constructed from Three Hydrogen Bonded Theophyllinium Cations that Coat [FeCl4]− Anions in the Crystal Structure of Tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 121–124. https://doi.org/10.1515/ncrs-2021–0399.10.1515/ncrs-2021-0399Search in Google Scholar

25. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 2016, 72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar

26. Ha, K. Diacridinium hexachloridoplatinate(IV) dihydrate. Acta Crystallogr. 2010, E66, m425; https://doi.org/10.1107/s1600536810009566.Search in Google Scholar

27. Woodward, L. A.; Creigrton, J. A. Raman Spectra of the Hexachloropalladate, Hexachloroplatinate and Hexabromoplatinate Ions in Aqueous Solution. Spectrochim. Acta 1961, 17, 594–599; https://doi.org/10.1016/0371–1951(61)80119-7.10.1016/0371-1951(61)80119-7Search in Google Scholar

28. Ermakova, T. G.; Shaulina, L. P.; Kuznetsova, N. P.; Volkova, L. I.; Pozdnyakov, A. S.; Prozorova, G. F. Sorption of Noble Metal Compounds by Cross-Linked Copolymer of 1-Vinyl-1,2,4-triazole with Acrylic acid. Russ. J. Appl. Chem. 2012, 85, 35–40; https://doi.org/10.1134/S1070427212010077.Search in Google Scholar

Received: 2024-05-10
Accepted: 2024-07-15
Published Online: 2024-07-26
Published in Print: 2024-10-28

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial 2024 – New developments and changes of Zeitschrift für Kristallographie – New Crystal Structures
  4. New Crystal Structures
  5. Hydrogen bonding and π⋅⋅⋅halogen interactions in the crystal structure of bis(theophyllinium) hexachloridoplatinate(IV) monohydrate
  6. The crystal structure of 6-amino-2-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  7. Crystal structure of poly[(μ4-(3-amino-1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ 4 N:O:O':O')(1-methylpyrroldin-2-one-κ1O)dicopper(II)] – 1-methylpyrroldin-2-one (1/3), C40H48Cu2N12O12
  8. The crystal structure of 18-crown-6-k6O6(2,4,5-trinitroimidazol-1-ido-k1O)potassium(I)
  9. Crystal structure of poly[tetraaqua-bis(μ2-5-bromoisophthalato-κ3O,O:O)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N)dicadmium(II)] dihydrate
  10. Crystal structure of (5R,6S,E)-5-acetoxy-2-methyl-6-((2aR,3R,5aS,5bS,11aR,12aS)-2a,5a,8,8-tetramethyl-9-oxotetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-3-yl)hept-2-enoic acid, C32H48O5
  11. The crystal structure of poly[diaqua-bis(μ2 -thiocyanato-κ2N:O)cobalt(II) monohydrate
  12. The crystal structure of 1,3,5-tri(1H-imidazol-1-yl)benzene–2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid (1/1)
  13. Crystal structure of dichlorido-bis(1-[(2-ethyl-benzimidazole-1-yl)methyl]-1H–benzotriazole) cadmium(II), C32H32CdN10OCl2
  14. The crystal structure of N′-(tert-butyl)-N′-(3,5-dimethylbenzoyl)-3-methoxy-N,2-dimethylbenzohydrazide, C23H30N2O3
  15. Crystal stucture of 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide
  16. Crystal structure of bis(μ-benzeneselenolato)-(tetracarbonyl)-{μ-[N-(diphenylphosphanyl)-N-(3-ethynylphenyl)-P,P-diphenylphosphinous amide]} diiron, C48H35Fe2NO4P2Se2
  17. The crystal structure of 2′-(p-tolyl)-4′H-spiro[isochromane-1,1′-naphthalene]-3,4′-dione, C25H18O3
  18. The crystal structure of poly[hexaqua-tetrakis(μ4-pyridine-2,4-dicarboxylate-κ5N: O: O′: O″: O‴)-bi(μ2-pyridine-2,4-dicarboxylate-κ3N: O: O′)-digadolinium(III)tricopper (II)], [Gd2Cu3(C7H3NO4)6(H2O)6] n
  19. Crystal structure of poly[bis(4-(4-(pyridin-4-yl)phenyl)pyridin-1-ium-κ1N)-(μ4-benzene-1,2,4,5-tetracarboxylato-κ5O:O′: O″:O‴:O⁗)-(μ2-2,5-dicarboxyterephthalato-κ2O:O′)dizinc(II)], C52H32N4O16Zn2
  20. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-carboxy-6-nitrobenzoate monohydrate, C24H25FN4O10
  21. Crystal structure of dichlorido-(1-((3,5-dimethyl-2,3-dihydro-1H-1,2,3-triazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-k1N)zinc(II), C22H24ZnN12Cl2
  22. The crystal structure of (3-chlorothiophene-2-carboxylato-κ2O, O′)-(2,2′-dipyridyl-κ2N,N′)lead(II), C20H12Cl2N2O4S2Pb
  23. Synthesis and crystal structure of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, C19H14FN5O
  24. The crystal structure of the coordination compound catena-poly[(18-crown-6-ether-κ6O6)(4,5-dinitroimidazolato-κ1O)potassium(I)]
  25. Crystal structure of 7-(diethylamino)-3-(trifluoroacetyl)-2H-chromen-2-one, C15H14F3NO3
  26. Crystal structure of dichlorido-1-[(2-ethylimidazole-1-yl)methyl]-1H–benzotriazole κ1N zinc(II), C24H26ZnN10Cl2
  27. Crystal and molecular structure of 5-bromopyridine-2,3-diamine
  28. Crystal structure of catena-poly[bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-k3-O,O:O)hexaqua-dicobalt tetrahydrate], C26H36N4O20Co2
  29. Crystal structure of thiocyanate-κ1N-bis(μ1-2,6-diformyl-4-methylphenol oxime-κ2N,O)-manganese(III) acetonitrile solvate, C21H21MnN6O6S
  30. The crystal structure of pyrrolidin-1-yl pivalate, C9H13NO4
  31. The crystal structure of 2,2′-(2,2-diphenylethene-1,1-diyl)bis(1,4-dimethoxybenzene), C30H28O4
  32. Crystal structure of bis(benzyltrimethylammonium) tetrathiotungstate(VI), {(C6H5CH2)(CH3)3N}2[WS4]
  33. The crystal structure of ethyl (Z)-2-(ethoxymethylene)-3-oxobutanoate, C9H14O4
  34. The crystal structure of (E)-6-bromo-3,5-dimethyl-2-(1-phenylprop-1-en-2-yl)-3Himidazo[4,5b]pyridine, C17H16BrN3
  35. Crystal structure of (3S,3′S,4R,4′S)-3′-(furan-3-yl)-3-hydroxy-4′-methyl-3,5,6′,7′-tetrahydro-1H,3′H-4,5′-spirobi[isobenzofuran]-1,1′(4′H)-dione-methanol (1/1), C21H22O7
  36. Cocrystal structure of progesterone-isophthalic acid, C25H33O4
  37. The crystal structure of 3-(6-fluoro-1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one, C17H12FN3O
  38. Crystal structure of S-(4-carboxybutyl)- l -cysteine
  39. The cocrystal of 2,2′-(hydrazine-1,1-diyl)bis(1H-imidazole-4,5-dicarbonitrile)– methanol (2/3)
  40. Crystal structure of (1′R,2′S,4′R,6′S)-4,6-dihydroxy-1′,8′,8′-trimethyl-3-(3-methylbutanoyl)-4′,8′,6′,1′,7,2′-hexahydro-1H-4′,6′-methanoxanthene-8-carbaldehyde, C23H30O5
  41. Crystal structure of (3,6-di(2-pyridyl)-4-methylphenyl pyridazine-k 2 N,N′)-bis(1-phenyl-pyrazole-κ 2 C,N) iridium(III) hexafluorophosphate, C39H29F6IrN8P
  42. Crystal structure of 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene]thiocarbonohydrazide dimethyl sulfoxide monosolvate, C17H18N4O2S·C2H6OS
  43. Crystal structure of (S)-4-(2-(4-(2-acetyl-5-chlorophenyl)-3-methoxy-6-oxopyridazin-1(6H)-yl)-3-phenylpropanamido)benzoic acid monohydrate, C29H26ClN3O7
  44. The crystal structure of 1,3-bis(2,4-dinitro-1H-imidazol-1-yl)propane
  45. Crystal structure of 4-chlorobenzyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H19ClO3
  46. Crystal structure of 1-(5-(benzo[d][1,3]dioxol-5-yl)-4-benzyl-1-(4-bromophenyl)-4,5-dihydro-1H-1,2,4-triazol-3-yl)ethan-1-one, C24H20BrN3O3
  47. The crystal structure of (Z)-3′-(2-(1-(3,4-dimethyl-phenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene)hydrazinyl)-2′-hydroxy-[1,1′-biphenyl]-3-carboxylicacid ─ methanol (1/1), C26H26N4O5
  48. Crystal structure of (S)-1-phenylpropan-1-aminium (S)-(1-phenylpropyl)carbamate C19H26N2O2
  49. Synthesis and crystal structure of methyl 2-((5-bromo-4-(4-cyclopropylnaphthalen-1-yl)-4H-1,2,4-triazol-3-yl)thio)acetate, C18H16BrN3O2S
  50. The crystal structure of trichlorobis(pyridine-2,6-dithio-κS-carbomethylamido)antimony(III), [SbCl3(C9H11N3S2)2]
  51. Crystal structure of 1,8-dihydroxy-3-{[(triphenylstannyl)oxy]carbonyl} anthracene-9,10-dione, C33H22O6Sn
  52. The crystal structure of (E)-4-(2-(pyridin-4-ylmethylene)hydrazine-1-carbonyl)pyridin-1-ium-2-olate dihydrate, C12H14N4O4
  53. The crystal structure of 6-amino-pyridinium-2-carboxylate, C6H6N2O2
  54. The crystal structure of catena-poly[aqua-nitrato-κ3O,O:O′′-(1,10-phenanthroline-κ2N,N)sodium(I)], C24H18N6O7Na2
  55. Retractions
  56. Retraction of: Crystal structure of bis[diaquaisonicotinatosamarium(III)]-µ-isonicotinato-[diisonicotinatocopper(II)], CuSm2(C6H4NO2)8(H2O)4
  57. Retraction of: Crystal structure of aqua(2,2-bipyridine-k 2 N:N′)(nitrato)-(4-aminobenzoato)cadmium(II) nitrate, [Cd(H2O)(NO3)(C10H8N2)(C7H7NO2)][NO3]
Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0206/html?lang=en&srsltid=AfmBOoqTfanbNk3Nv5llTgic_kfLlkxTXmYr2QHji3hfbDRA-66KpCCK
Scroll to top button