Home The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
Article Open Access

The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O

  • Jiayuan Dou , Wenqiang Tang ORCID logo EMAIL logo and Yanrong Gao
Published/Copyright: June 5, 2024

Abstract

C14H20N2O, monoclinic, P21/c (no. 14), a = 12.6793(11) Å, b = 9.0970(7) Å, c = 11.4964(10) Å, β = 98.008(8)°, V = 1,313.11(19) Å3, Z = 4, R gt (F) = 0.0585, wR ref (F 2) = 0.1595, T = 293 K.

CCDC no.: 2357522

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.63 × 0.58 × 0.52 mm
Wavelength:

μ:
Mo Kα radiation (0.71073 Å)

0.08 mm−1
Diffractometer, scan mode:

θ max, completeness:
Multiwire proportional, φ and ω

29.3°, >99 %
N(hkl)measured, N(hkl)unique, R int: 6,360, 3,019, 0.023
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2,194
N(param) refined: 155
Programs: Bruker, 1 SHELX, 2 , 3 Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.07199 (17) 0.5693 (3) 0.3506 (2) 0.0741 (7)
H1A 0.063234 0.647055 0.293634 0.111*
H1B 0.008687 0.561005 0.387279 0.111*
H1C 0.084390 0.478356 0.312413 0.111*
C2 0.16602 (14) 0.6032 (2) 0.44295 (16) 0.0485 (5)
C3 0.26873 (14) 0.5705 (2) 0.42505 (16) 0.0488 (5)
H3 0.279819 0.522604 0.356311 0.059*
C4 0.35587 (13) 0.60688 (19) 0.50649 (15) 0.0451 (4)
H4 0.424368 0.585177 0.491485 0.054*
C5 0.34076 (12) 0.67532 (17) 0.60977 (14) 0.0386 (4)
C6 0.23847 (14) 0.7055 (2) 0.63036 (16) 0.0480 (4)
H6 0.227235 0.749256 0.700711 0.058*
C7 0.15257 (14) 0.6712 (2) 0.54732 (17) 0.0521 (5)
H7 0.084197 0.694411 0.561939 0.063*
C8 0.50884 (12) 0.63510 (17) 0.74070 (14) 0.0375 (4)
C9 0.66625 (13) 0.62808 (18) 0.89313 (15) 0.0425 (4)
H9 0.667315 0.525859 0.866417 0.051*
C10 0.77466 (14) 0.6938 (2) 0.88578 (17) 0.0539 (5)
H10A 0.775360 0.795871 0.910283 0.065*
H10B 0.788915 0.690698 0.805083 0.065*
C11 0.86095 (15) 0.6098 (3) 0.9636 (2) 0.0702 (6)
H11A 0.864507 0.510081 0.934510 0.084*
H11B 0.929315 0.656245 0.960250 0.084*
C12 0.83925 (19) 0.6058 (3) 1.0895 (2) 0.0809 (8)
H12A 0.892805 0.545955 1.135906 0.097*
H12B 0.843952 0.704579 1.121668 0.097*
C13 0.7307 (2) 0.5438 (3) 1.09753 (19) 0.0734 (7)
H13A 0.716789 0.548871 1.178301 0.088*
H13B 0.728938 0.441183 1.074383 0.088*
C14 0.64446 (16) 0.6268 (2) 1.01955 (18) 0.0606 (5)
H14A 0.641203 0.727082 1.047555 0.073*
H14B 0.576041 0.580858 1.023603 0.073*
N1 0.42730 (11) 0.72248 (15) 0.69295 (13) 0.0472 (4)
H1 0.428223 0.812963 0.714741 0.057*
N2 0.58303 (11) 0.70460 (16) 0.81665 (14) 0.0553 (5)
H2 0.581007 0.798985 0.820001 0.066*
O1 0.51442 (9) 0.50396 (12) 0.71515 (11) 0.0479 (4)

1 Source of materials

In a 20 mL clear glass vial, 0.107 g of p–toluidine and 0.125 g of cyclohexyl isocyanate were combined with 15 mL of dichloromethane. The mixture was allowed to dissolve completely, after which the vial was sealed and heated to 323 K with continuous stirring for 2 h. The progression of the reaction was monitored using thin-layer chromatography on silica gel plates, which resulted in the formation of a white precipitate. This precipitate was dried under vacuum at room temperature, yielding the crude product of the target compound. Subsequently, 0.05 g of this compound was dissolved in 10 mL of ethanol and stirred at room temperature for 20 min. The solution was then transferred to a small vial and left to evaporate at room temperature. After one week, the crystals of the target compound were obtained.

2 Experimental details

The structure was elucidated employing the SHELXT program, 2 and refined by the SHELXL program, 3 crystallographic data and graphical depiction were accomplished utilizing the OLEX2 software package. 4

3 Comment

Urea-based organic compounds are pivotal in the realm of drug discovery and development, owing to their distinct chemical architectures and broad spectrum of biological activities. 5 A myriad of urea-based derivatives has been elucidated in crystalline forms. 6 10 In these structures, intermolecular hydrogen bonding predominantly orchestrates the molecular assembly into crystal lattices.

In the described structure, the cyclohexane ring of 1-cyclohexyl-3-(p-tolyl) urea adopts a chair conformation. The urea group atoms and those of the phenyl ring are nearly coplanar, displaying bond lengths and angles that align with those observed in comparable structures. Notably, there exists a significant dihedral angle of 52.02° between the plane of the phenyl ring and that of the urea group.

Intermolecular connectivity is achieved through hydrogen bonds. Specifically, the N1–H1⋯O1 hydrogen bond displays an angle of 159.12(10)°, and a bond length of 2.0085(12) Å, while the N2–H2⋯O1 hydrogen bond angle is 147.77(10)°, with a bond length of 2.2289(12) Å. These hydrogen bonding interactions are crucial in dictating the crystal structure of the aforementioned compound. 11 17


Corresponding author: Wenqiang Tang, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the projects of Shaanxi Provincial Science and Technology Department (2022SF-448), Scientific research plan project of Shaanxi Provincial Department of Education (22JK0276), the Xianyang key laboratory of molecular imaging and drug synthesis (2021QXNL-PT-0008), the 2023 key research and development project of the Xianyang Science and Technology Bureau (L2023-ZDYF-SF-030), the key research and development project of Shaanxi Provincial Science and Technology Department (2023-YBSF-036).

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Ghosh, A. K.; Brindisi, M. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. J. Med. Chem. 2020, 63, 2751–2788; https://doi.org/10.1021/acs.jmedchem.9b01541.Search in Google Scholar PubMed PubMed Central

6. Rajnikant, D.; Deshmukh, M. B.; Kamni. Synthesis, X-Ray Structure and N–H, O Interactions in 1,3-d Iphenyl-Urea. Bull. Mater. Sci. 2006, 29, 239–242; https://doi.org/10.1007/bf02706491.Search in Google Scholar

7. Gooch, A.; McGhee, A. M.; Renton, L. C.; Plante, J. P.; Lindsay, C. I.; Wilson, A. J. Design, Synthesis and Binding Properties of Conformer-Independent Linear ADA Hydrogen-Bonding Arrays. Supramol. Chem. 2009, 21, 12–17; https://doi.org/10.1080/10610270802468397.Search in Google Scholar

8. Kulikov, O. V.; Siriwardane, D. A.; McCandless, G. T.; Barnes, C.; Sevryugina, Y. V.; DeSousa, J. D.; Wu, J.; Sommer, R.; Novak, B. M. Self-assembly of N-Alkyl- and Aryl-Side Chain Ureas and Their Derivatives as Evidenced by SEM and X-Ray Analysis. Eur. J. Org Chem. 2015, 2015, 7511–7518; https://doi.org/10.1002/ejoc.201501242.Search in Google Scholar

9. Lefranc, J.; Tetlow, D. J.; Donnard, M.; Minassi, A.; Gálvez, E.; Clayden, J. Geometry-selective Synthesis of E or Z N-Vinyl Ureas (N-Carbamoyl Enamines). Org. Lett. 2011, 13, 296–299; https://doi.org/10.1021/ol1027442.Search in Google Scholar PubMed

10. Xu, M.; Jupp, A. R.; Ong, M. S. E.; Burton, K. I.; Chitnis, S. S.; Stephan, D. W. Synthesis of Urea Derivatives from CO2 and Silylamines. Angew. Chem., Int. Ed. 2019, 58, 5707–5711; https://doi.org/10.1002/anie.201900058.Search in Google Scholar PubMed

11. Choi, H.; Shim, Y. S.; Han, B. H.; Kang, S. K.; Sung, C. K. 1-[3-(Hydroxymethyl)phenyl]-3-Phenylurea. Acta Crystallogr. 2011, E67, o2094; https://doi.org/10.1107/s1600536811028315.Search in Google Scholar

12. Wróbel, T. M.; Kiełbus, M.; Kaczor, A. A.; Kryštof, V.; Karczmarzyk, Z.; Wysocki, W.; Fruziński, A.; Król, S. K.; Grabarska, A.; Stepulak, A.; Matosiuk, D. Discovery of Nitroaryl Urea Derivatives with Antiproliferative Properties. J. Enzyme Inhib. Med. Chem. 2016, 31, 608–618; https://doi.org/10.3109/14756366.2015.1057716.Search in Google Scholar PubMed

13. Mague, J. T.; Mohamed, S. K.; Akkurt, M.; Omran, O. A.; Albayati, M. R. Crystal Structure of 1-(2-Aminophenyl)-3-Phenylurea. Acta Crystallogr. 2015, E71, o88–o89; https://doi.org/10.1107/s2056989014028175.Search in Google Scholar

14. Koshti, V. S.; Thorat, S. H.; Gote, R. P.; Chikkali, S. H.; Gonnade, R. G. The Impact of Modular Substitution on Crystal Packing: the Tale of Two Ureas. CrystEngComm 2016, 18, 7078–7094; https://doi.org/10.1039/c6ce01324d.Search in Google Scholar

15. Capacci-Daniel, C. A.; Bertke, J. A.; Dehghan, S.; Hiremath–Darji, R.; Swift, J. A. Concomitant Polymorphs of 1,3-Bis(3-Fluorophenyl)urea. Acta Crystallogr. 2016, C72, 692–696; https://doi.org/10.1107/s2053229616013565.Search in Google Scholar

16. Yamasaki, R.; Iida, M.; Ito, A.; Fukuda, K.; Tanatani, A.; Kagechika, H.; Masu, H.; Okamoto, I. Crystal Engineering of N,N′-diphenylurea Compounds Featuring Phenyl-Perfluorophenyl Interaction. Cryst. Growth Des. 2017, 17, 5858–5866; https://doi.org/10.1021/acs.cgd.7b00951.Search in Google Scholar

17. Al-Omary, F. A. M.; Al-Rasheed, L. S.; Ghabbour, H.A.; El-Emam, A. A. Crystal Structure of 1-(adamantan-1-Yl)-3-(3-Chlorophenyl)thiourea, C17H21ClN2S. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 33–35; https://doi.org/10.1021/acs.cgd.7b00951.Search in Google Scholar

Received: 2024-04-28
Accepted: 2024-05-23
Published Online: 2024-06-05
Published in Print: 2024-08-27

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of hexaquazinc(II) poly[hexakis(μ2-4-methylbenzenesulfinato-κ2O:O′) dizinc(II)]
  4. The crystal structure of poly[((2-(4,5-dihydro-1H-pyrazol-4-yl)-1,3-dioxoisoindoline-5-carbonyl)oxy)(1-(dimethylamino)ethoxy)zinc[II]], C16H14ZnN4O5
  5. Crystal structure of bis[(triaqua-4-iodopyridine-2,6-dicarboxylato-κ 3 N,O,O )cobalt(II)] trihydrate, C14H22N2O17I2Co2
  6. Crystal structure of bis(methanol-κO)-bis(nitrato-kO)-bis(1-((2-(2-chloro-4-(4-chlorophenoxy)phenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole-κN)cadmium(II), C40H42O14N8Cl4Cd
  7. Crystal structure of poly[μ2-dichlorido-(μ2-1-[(2,4-dimethyl-1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2N:N′)cadmium(II)], C11H12CdN6Cl2
  8. The crystal structure of (3aS, 4R, 7S, 7aR)-hexahydro-4, 7-methano-1H-isoindole-1, 3-(2H)-dione, C9H11NO2
  9. The crystal structure of N-(acridin-9-yl)-4-chloro-N-(4-chloro-butanoyl) butanamide, C21H20Cl2N2O2
  10. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5
  11. The crystal structure of tetrakis(μ 2-2-amino-3,5-dibromobenzoate-κ 2 O:O′)-octakis(n-butyl-κ 1 C)-bis(μ 3-oxo)tetratin(II), C60H92Br8N4O10Sn4
  12. Crystal structure of methyl-1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H20N2O2
  13. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  14. Crystal structure of 6,6′-((1E,1′E)-((2-phenylpyrimidine-4,6-diyl)bis(hydrazin-2-yl-1-ylidene))bis(methaneylylidene))bis(2-methoxyphenol)monohydrate, C26H26N6O5
  15. Crystal structure of bis(N,N,N-trimethylbutanaminium) tetrathiotungstate(VI), (BuMe3N)2[WS4]
  16. The crystal structure of 2,3,9-triphenyl-9-(2-phenylbenzofuran-3-yl)-9H-9λ 5-benzo[4,5][1,2]oxaphospholo[2,3-b][1,2,5]oxadiphosphole 2-oxide, C40H28O4P2
  17. Crystal structure of 1–methyl-3-propyl-4-nitro-1H-pyrazole-5-carboxylic acid, C8H11N3O4
  18. Crystal structure of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide, C9H7ClN2OS
  19. The crystal structure of N-benzyl-2-chloro-N-(p-tolyl) acetamide, C16H16ClNO
  20. Crystal structure of 3,4-dimethoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O5
  21. Crystal structure of 2,5-bis(2,5-dimethoxybenzyl)-3,6-dimethyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, C26H28N2O6
  22. Crystal structure of poly[(μ3-5-bromoisophthalato-κ4 O,O′ :O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2 N:N′)cobalt(II)], C20H15BrCoN6O4
  23. The crystal structure of bis(2-(piperidin-1-ium-4-yl)-1Hbenzo[d]imidazol-3-ium) dihydrogen decavanadate, C24H36N6O28V10
  24. Crystal structure of diaqua-bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine3-carboxylato-O,O′)-cobalt(ii)dihydrate, C26H36N4O14Co
  25. Crystal structure of poly[(μ2-5-bromoisophthalato-κ4 O,O :O ,O )-(μ2-1,4-bis(2-methylimidazol-1-ylmethyl)benzene-N:N)cadmium(II)], C24H21BrCdN4O4
  26. The crystal structure of dimethyl 8-(3-methoxy-2-(methoxycarbonyl)-3-oxoprop-1-en-1-yl)-4-methyl-1-(p-tolyl)-1,3a,4,8b-tetrahydro-3H-furo[3,4-b]indole-3,3-dicarboxylate. C28H29NO9
  27. Crystal structure of (3R)-1-(3,5-dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate chloride, C21H23ClN2O4
  28. Synthesis and crystal structure of 3-(4,5-dihydroisoxazol-3-yl)-2-methyl-4-(methylsulfonyl)benzoic acid, C12H13NO5S
  29. The crystal structure of hexaaquamagnesium(II) bis-3-(1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-α]pyridin-1-yl)benzoate, C36H42N4O10Mg
  30. Crystal structure of 4-formyl-2-methoxyphenyl 2-acetoxybenzoate, C17H14O6
  31. Crystal structure of poly[octakis(μ-oxido)-tris(μ-1,1′-[[1,1′-biphenyl]-4,4′-diylbis(methylene)]bis(1H-imidazole))-tetrakis(oxido)-tetra-vanadium-dimanganese(II)dihydrate], C30H29MnN6O7V2
  32. Crystal structure of 4,8a-bis(4-chlorophenyl)-1,5,6-tris(4-fluorobenzyl)-1,4,4a,4b,5,6,8a,8b-octahydrocyclobuta[1,2-b:3,4-c′]dipyridine-3,8-dicarbonitrile, C45H33Cl2F3N4
  33. Crystal structure of benzo[d][1,3]dioxol-5-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H20O5
  34. Crystal structure of N-benzoyl-N-phenylhydroxylaminato-dicarbonylrhodium(I), [Rh(BNA)CO2]
  35. The crystal structure of N-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)-4-methylbenzenesulfonamide, C26H21NO3S
  36. The crystal structure of methyl ((4-aminobenzyl)sulfonyl)-d-prolinate, C13H18N2O4S
  37. The crystal structure of dichlorido-(N-isopropyl-N-(pyridin-2-ylmethyl)propan-2-amine-κ 2 N, N′)palladium(II), C12H20N2PdCl2
  38. Crystal structure of poly[(μ 2-5-hydroxyisophthalato-κ4 O,O′:O″,O‴)-(μ 2-1,4-bis(2-methylimidazolyl)-1-butene-N:N′)nickel(II)], C20H20NiN4O5
  39. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1 N)cobalt(II)}(μ 2-oxido)-hexaoxido-dimolybdenum(VI)— 1-methyl-1H-imidazole (1/2), C32H48CoMo2N16O7
  40. Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
  41. The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
  42. Crystal structure of 1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-hydroxypropan-1-one, C21H18BrO3P
  43. The crystal structure of fac-tricarbonyl(bis(3,5-dimethyl-4H-pyrazole)-κ1 N)-((nitrato)-κ1 O)-rhenium(I)— 3,5-dimethyl-4H-pyrazole(1/1), C18H23N7O6Re
  44. The crystal structure of 4′-chloro-griseofulvin: (2S,6′R)-4′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-3′-ene-2′,3-dione, C16H14Cl2O5
  45. Crystal structure of tetraethylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  46. Crystal structure of 1-cyclohexyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester, C22H27NO4
  47. The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n
  48. The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
  49. Crystal structure of 5,6,3′,4′,5′-pentamethoxy-flavone dihydrate, C20H24O9
  50. Crystal structure of (E)-N-(2-bromophenyl)-4-(4-(3,5-dimethoxystyryl)phenoxy)pyrimidin-2-amine, C26H22BrN3O3
  51. Crystal structure of methyl (3R)-1-(2-bromo-4-fluorophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate hydrochloride hydrate, C19H19BrClFN2O3
  52. The crystal structure of 1-(2-chlorophenyl)-3-(p-tolyl)urea, C14H13ClN2O
  53. The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
  54. Crystal structure of ((benzyl(hydroxy)-amino)(4-chlorophenyl)methyl)-diphenylphosphine oxide, C26H23ClNO2P
  55. The crystal structure of ethyl 3-(1-methyl-1H-indole-2-carbonyl)-2-phenylquinoline-4-carboxylate, C28H22N2O3
  56. The crystal structure of 1,4-bis(1H-imidazol-3-ium-1-yl)benzene dinitrate, C12H12N4 2+·2(NO3 )
  57. Crystal structure of tris(hexafluoroacetylacetonato-κ2O,O′) bis(triphenylphosphine oxide-κ1O)samarium(III), C51H33F18O8P2Sm
  58. Crystal structure of 1-(4-(dimethylamino)phenyl)-2,3-bis(diphenylphosphoryl)propan-1-one, C35H33NO3P2
  59. Crystal structure of diaqua[bis(μ 2-pyridine 2,6-dicarboxylato) bismuth(III) potassium(I)], C14H10BiKN2O10
  60. Crystal structure of (R)-N, N -dimethyl-[1, 1′-binaphthalene]-2, 2′-diamine, C22H20N2
  61. Crystal structure of 1-phenyl-4-(2-furoyl)-3-furyl-1H-pyrazol-5-ol, C18H12N2O4
  62. Crystal structure of bis(14,34-dimethyl[11,21:23,31-terphenyl]-22-yl)diselane, C40H34Se2
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0191/html?lang=en&srsltid=AfmBOop1d2Ob81Z5mgc_ksXEdVZRk3YzP9dGppEHXJQ6KRYmhVG7FSe4
Scroll to top button