Home The crystal structure of 1,3,5-tri(1H-imidazol-1-yl)benzene–2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid (1/1)
Article Open Access

The crystal structure of 1,3,5-tri(1H-imidazol-1-yl)benzene–2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid (1/1)

  • Airong Wang , Xiaoli Wang , Yanfei Wang ORCID logo , Zhongfeng Shi EMAIL logo and Jiaming Li ORCID logo EMAIL logo
Published/Copyright: June 20, 2024

Abstract

C23H14Cl4N6O4, triclinic, P1̄ (no. 2), a = 9.044(2) Å, b = 11.340(2) Å, c = 11.812(3) Å, α = 95.470(17)°, β = 105.46(2)°, γ = 90.084(18)°, V = 1161.8(5) Å3, Z = 2, Rgt(F) = 0.0914, wRref(F2) = 0.2547, T = 296 K.

CCDC no.: 2359934

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
(a) The asymmetric unit structure of I, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30 % probability level; (b) view of the 1D O–H⋯N hydrogen bonded framework in I. The dashed line shows the inter-molecular O–H⋯N hydrogen bond (symmetry codes: i −x, 2 − y, 1 − z; ii 3 − x, 1 − y, 2 − z).
Figure 1:

(a) The asymmetric unit structure of I, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30 % probability level; (b) view of the 1D O–H⋯N hydrogen bonded framework in I. The dashed line shows the inter-molecular O–H⋯N hydrogen bond (symmetry codes: i −x, 2 − y, 1 − z; ii 3 − x, 1 − y, 2 − z).

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.28 × 0.20 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.56 mm−1
Diffractometer, scan mode: XtaLAB Mini (ROW), ω
θmax, completeness: 25.1°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 6227, 4143, 0.068
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2132
N(param)refined: 334
Programs: CrysAlisPRO, 1 Olex2, 2 SHELX, 3 , 4 PLATON 5
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.2601 (7) 0.1318 (6) 0.4625 (6) 0.0399 (16)
C2 0.1276 (7) 0.0595 (5) 0.4783 (6) 0.0393 (16)
C3 0.1396 (7) 0.0071 (5) 0.5844 (6) 0.0409 (16)
C4 −0.0153 (7) 0.0524 (5) 0.3969 (6) 0.0406 (16)
C5 0.8117 (7) 0.4935 (6) 0.1465 (6) 0.0433 (16)
C6 0.6482 (7) 0.4957 (6) 0.0746 (5) 0.0366 (15)
C7 0.5758 (7) 0.6030 (6) 0.0604 (6) 0.0364 (14)
C8 0.5701 (7) 0.3936 (5) 0.0151 (6) 0.0383 (15)
C9 0.3895 (8) 0.7741 (5) 0.3348 (7) 0.0465 (17)
H9 0.484011 0.777099 0.390980 0.056*
C10 0.1724 (8) 0.8249 (6) 0.2209 (7) 0.055 (2)
H10 0.091191 0.870569 0.185001 0.066*
C11 0.1851 (7) 0.7086 (6) 0.1947 (6) 0.0478 (17)
H11 0.114834 0.658656 0.138749 0.057*
C12 0.3808 (6) 0.5599 (5) 0.2732 (5) 0.0316 (14)
C13 0.2984 (7) 0.4660 (5) 0.2053 (6) 0.0392 (15)
H13 0.206704 0.478422 0.149834 0.047*
C14 0.3504 (7) 0.3514 (5) 0.2185 (5) 0.0345 (14)
C15 0.4843 (7) 0.3320 (5) 0.3033 (5) 0.0356 (14)
H15 0.515977 0.255479 0.317313 0.043*
C16 0.5700 (6) 0.4303 (5) 0.3669 (5) 0.0346 (14)
C17 0.5204 (6) 0.5441 (5) 0.3552 (5) 0.0337 (14)
H17 0.577912 0.608367 0.400525 0.040*
C18 0.1165 (8) 0.2535 (7) 0.0817 (7) 0.058 (2)
H18 0.054919 0.319395 0.077918 0.070*
C19 0.3142 (9) 0.1409 (6) 0.1294 (7) 0.060 (2)
H19 0.410764 0.112316 0.162743 0.072*
C20 0.1947 (9) 0.0802 (7) 0.0526 (7) 0.060 (2)
H20 0.196632 0.001220 0.023515 0.072*
C21 0.7959 (7) 0.4920 (6) 0.5350 (6) 0.0403 (16)
H21 0.767351 0.569424 0.549933 0.048*
C22 0.7926 (8) 0.3066 (6) 0.4596 (7) 0.055 (2)
H22 0.763093 0.234536 0.414356 0.066*
C23 0.9221 (8) 0.3316 (6) 0.5477 (7) 0.0544 (19)
H23 0.998517 0.277746 0.572945 0.065*
Cl1 0.31573 (19) 0.01128 (15) 0.68752 (17) 0.0559 (6)
Cl2 −0.0326 (2) 0.11624 (17) 0.26641 (17) 0.0578 (6)
Cl3 0.6689 (2) 0.72942 (16) 0.13764 (18) 0.0629 (6)
Cl4 0.6587 (2) 0.25842 (16) 0.0385 (2) 0.0647 (6)
N1 0.2990 (6) 0.8658 (5) 0.3093 (5) 0.0511 (15)
N2 0.3234 (6) 0.6772 (4) 0.2673 (5) 0.0396 (13)
N3 0.2641 (6) 0.2535 (4) 0.1483 (5) 0.0438 (14)
N4 0.0708 (7) 0.1505 (6) 0.0235 (6) 0.0655 (19)
N5 0.7133 (5) 0.4115 (4) 0.4511 (4) 0.0339 (12)
N6 0.9252 (6) 0.4441 (5) 0.5936 (5) 0.0427 (14)
O1 0.3517 (5) 0.0822 (4) 0.4144 (5) 0.0559 (13)
H1 0.362444 0.013890 0.432089 0.084*
O2 0.2677 (5) 0.2371 (4) 0.5045 (5) 0.0558 (13)
O3 0.8323 (5) 0.4808 (5) 0.2570 (4) 0.0624 (14)
H3 0.841024 0.546181 0.294654 0.094*
O4 0.9149 (5) 0.5000 (5) 0.0983 (4) 0.0591 (14)

1 Source of materials

All chemicals were purchased from commercial sources and used as received. A mixture of Pr(NO3)3·6H2O (0.0870 g, 2 mmol), 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylate (0.03050 g, 1 mmol), 1,3,5-tri(1H-imidazol-1-yl)benzene (0.0275 g, 1 mmol) and methanol/acetonitrile/H2O (2 mL/2 mL/10 mL) was added to a 25 mL Teflon-lined stainless steel reactor and heated at 413 K for 4 days. After cooling to room temperature at a rate of 283 K h−1, colorless block-shaped crystals of I were collected by filtration, washed with anhydrous ethanol and dried in air. Phase pure crystals were obtained by manual separation (Yield: 17.4 mg ca. 30 % based on 1,3,5-tri(1H-imidazol-1-yl)benzene). Anal. Calc. for I: C23H14Cl4N6O4 (%) (Mr = 580.20): C, 47.57; H, 2.41; N, 14.48. Found: C, 47.59; H, 2.38; N, 14.49 (CCDC number 2359934).

2 Experimental details

CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 1 Using Olex2, 2 the structure was solved with the ShelXT 3 structure solution program and refined with the ShelXL 4 refinement package. Carbon-bound hydrogen atoms were placed in calculated positions (d = 0.93 Å) for CH and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C) for –CH. The H atoms of hydroxyl group in I were refined as rotating groups, with dO–H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The structure was examined using the ADDSYM subroutine of PLATON 5 to ensure that no additional symmetry could be applied to the models.

3 Comment

Cocrystals are single-phase solid complexes, consisting of two or more neutral molecules that are solid under ambient conditions (called coformers) with a well-defined stoichiometric ratio, for which no charge transfer is observed in the resulting crystal structure. 6 Recently, the design and investigation of cocrystals have obtained considerable attention because of not only their different potential applications, but also their potential to enhance solubility and bioavailability of poorly water-soluble drugs. 7 9 Cocrystal development is however limited by their poor thermodynamic stability in aqueous environments. 10 Cocrystallization is an attractive formulation tool for tuning the physicochemical properties of a compound while not altering its molecular structure and has gained interest from both industry and academia. 11 Although the design strategy for cocrystals has marked several milestones over the past few decades, a holistic approach that utilizes as much cocrystal data in the Cambridge Structural Database (CSD) as possible is still lacking. 12 To date, the halogen-containing carboxylic acids, such as 2,3,5,6-tetrafluorobenzene-1,4-dicarboxylic acid, 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid, and 2,3,5,6- tetrabromobenzene-1,4-dicarboxylic acid, have afforded great interset in the preparation of MOFs for their out-standing features of versatile coordination fashions as well as potential hydrogen-bonding donors (C and O) and acceptors (F, Cl, Br). 13 15 A cocrystals can be afforded with the metal ions reaction with the above mentioned halogen-containing ligands and multi-nitrogen containing neutral auxiliary ligands under appropriate conditions. Accordingly, C–H⋯F/Cl/Br, C–F/Cl/Br⋯π, C–H⋯π and ππ are excellent candidates for assembling different organic molecules to cocrystals in different ways, ranging from one-dimensional (1D) chains and two-dimensional (2D) sheets to three- dimensional (3D) porous structures. 16 18 Of further interest, 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid featuring four chlorines in the 2,3,5,6-positions of the phenyl ring, as a derivative of terephthalic acid, remains largely unexplored hitherto in the field of cocrystals, compared with the well-studied ligands, terephthalic acid. 19 In this study, we seek to use 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid and 1,3,5-tri(1H-imidazol-1-yl)benzene as organic ligands for Pr(III) centers. Unfortunately, these combinations were unexpectedly obtained a cocrystal, which has been synthesized by hydrothermal methods and characterized by single-crystal X-ray diffraction and elemental analysis.

The asymmetric unit of the title structure contains a 1,3,5-tri(1H-imidazol-1-yl)benzene molecule, in a general position, and two halfs of a 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid molecules, being situated about a centre of inversion. There are hydrogen-bonding and π-stack interactions calculated by PLATON software. 5 Two 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid molecules firstly interact with 1,3,5-tri(1H-imidazol-1-yl)benzene to form a 1D chain by a pair of N–H⋯O [O1–H1⋯N1, length 2.625(7) Å, angle 123°; O3–H3⋯N6, length 2.509(7) Å, angle 105° hydrogen bonds. In particular, interchain hydrogen bonds C–H⋯Cl stabilized the crystal structure of I; these were formed between the chlorine of the tetrachlorobenzene (Cl1, Cl2, Cl3, and Cl4), which is the acceptor, and the carbon of the imidazole, which acts as the donor [length 2.937(8)–3.559(8) Å, angle 102.06–168.07°]. The two bond distances of C⋯Cl are 3.546(7) Å and 3.559(8) Å, which is slightly greater than the sum of the van der Waals radii of C and Cl (3.52 Å); and a bond angle of C–H⋯Cl is 102.06°, which exceeds the preferred minimum hydrogen bond angle of 110°. 20 Therefore, it belongs to a weak C–H⋯Cl hydrogen bond, compared with the reported literature. 21 23 In addition, the cocrystal has two types of ππ stacking interactions (Cg1/Cg3, Cg4/Cg6): between the imidazole rings (5-membered ring, Cg1: N1/C9/N2/C11/C10 and 5-membered ring, Cg3: N5/C21/N6/C23/C22) related to the (1,3,5-tri(1H-imidazol-1-yl)benzene compositions), and between the 1,3,5-tri(1H-imidazol-1-yl)benzene and the tetrachlorobenzene phenyl rings (6-membered ring, Cg4: C12/C13/C14/C15/C16/C17 and 6-membered ring, Cg6: C6/C7/C8 ii /C6 ii /C7 ii /C8). The dihedral angles between the Cg1/Cg3 iii or Cg3 iii /Cg1 (symmetry code: iii 1 − x, 1 − y, 1 − z) is 4.9(4)°, with centroid-to-centroid distance of 3.642(4) Å, and perpendicular distance of 3.443(3) or 3.362(3) Å. The dihedral angles between the Cg4/Cg6 (Cg4/Cg6 iv , symmetry code: 1 − x, 1 − y, −z) or Cg6/Cg4 (Cg6 iv /Cg4) is 7.1(3)°, with centroid-to-centroid distance of 3.698(4) Å, and perpendicular distance of 3.588(2) or 3.450(3) Å. Furthermore, three C–Cl⋯π (C4–Cl2⋯Cg2, C7–Cl3⋯Cg2 iv , C8–Cl4⋯Cg1 iv , 5-membered ring, Cg1: N1/C9/N2/C11/C10) interactions exist between the flanking imidazole rings and C–Cl of the tetrachlorobenzene with C4⋯Cg2, C7⋯Cg2 iv , and C8⋯Cg1 iv distances of 3.411(4), 3.479(4), and 3.783(4) Å, and the C4–Cl2⋯Cg2, C7–Cl3⋯Cg2 iv , and C8–Cl4⋯Cg1 iv angles of 138.4(2), 97.1(2), and 91.7(2)°, respectively. Thus, through hydrogen bonds O–H⋯N, C–H⋯O/N/Cl and ππ as well as with C–Cl⋯π interactions, the 2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid and 1,3,5-tri(1H-imidazol-1-yl)benzene in I, is expanded into a stable three-dimensional supramolecular architecture. PLATON 5 analysis shows that the whole framework is composed of voids of 1.5 % that represent 1161.8 Å3 per unit cell volume and 16.9 Å3 total potential solvent area volume.


Corresponding authors: Zhongfeng Shi and Jiaming Li, Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi 535011, People’s Republic of China, E-mail: (Z. Shi), (J. Li)

Funding source: Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University

Award Identifier / Grant number: YCSW2024560

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University (Grant No. 2023ZZKT01).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction Ltd, CrysAlisPRO. Rigaku Oxford Diffraction, Version 1.171.39.6a, England, 2018.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

5. Spek, A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

6. Bond, A. D. What Is a Co-crystal? CrystEngComm 2007, 9, 833–834; https://doi.org/10.1039/b708112j.Search in Google Scholar

7. Li, J. X.; Lu, Y. J.; Quan, K. Y.; Wu, L. B.; Feng, X.; Wang, W. Z. One-pot Cocrystallization of Mononuclear and 1D Cobalt(II) Complexes Based on Flexible Triclopyr and 2,2′-Bipyridine Coligands: Structural Analyses, Conformation Comparison, Non-covalent Interactions and Magnetic Properties. J. Mol. Struct. 2024, 1297, 136830, https://doi.org/10.1016/j.molstruc.2023.136830.Search in Google Scholar

8. Li, J. X.; Liu, M. Y.; You, X.; Wang, J. Q.; Feng, X. One-pot Cocrystallization of 1D Linear and Zigzag Cobalt(II) Polymers Assembled by Triclopyr and 4,4′-Bipyridine: Structural Comparison, Conformational Analysis, Non-covalent Interactions as Well as the Magnetic Property of the Latter. Polyhedron 2024, 249, 116791, https://doi.org/10.1016/j.poly.2023.116791.Search in Google Scholar

9. Friŝĉić, T. Supramolecular Concepts and New Techniques in Mechanochemistry: Cocrystals, Cages, Rotaxanes, Open Metal-Organic Frameworks. Chem. Soc. Rev. 2012, 41, 3493–3510; https://doi.org/10.1039/c2cs15332g.Search in Google Scholar PubMed

10. Wong, S. N.; Fu, M.; Li, S.; Kwok, W. T. C.; Chow, S.; Low, K.-H.; Chow, S. F. Discovery of New Cocrystals Beyond Serendipity: Lessons Learned from Successes and Failures. CrystEngComm 2024, 26, 1505–1526; https://doi.org/10.1039/d4ce00021h.Search in Google Scholar

11. Huanga, N.; Rodríguez-Hornedo, N. Engineering Cocrystal Thermodynamic Stability and Eutectic Points by Micellar Solubilization and Ionization. CrystEngComm 2011, 13, 5409–5422; https://doi.org/10.1039/c1ce05381g.Search in Google Scholar

12. Devogelaer, J.-J.; Brugman, S. J. T.; Meekes, H.; Tinnemans, P.; Vlieg, E.; Gelder de, R. Cocrystal Design by Network-Based Link Prediction. CrystEngComm 2019, 21, 6875–6885; https://doi.org/10.1039/c9ce01110b.Search in Google Scholar

13. Fujisawa, K.; Harakuni, S.; Ageishi, K.; Tiekink, E. R. T. Crystal Structure of Bis(3,5-Dimethyl-1h-Pyrazol-4-Ammonium) Tetrafluoroterephthate, 2[C5H10N3] [C8F4O4]. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 1017–1020; https://doi.org/10.1515/ncrs-2023-0333.Search in Google Scholar

14. Fujisawa, K.; Harakuni, S.; Iwai, K.; Ageishi, K.; Tiekink, E. R. T. Crystal Structure of Bis(3,5-Diisopropyl-1h-Pyrazol-4-ammonium) Tetrafluoroterephthalate, 2[C9H18N3] [C8F4O4]. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 167–170; https://doi.org/10.1515/ncrs-2023-0455.Search in Google Scholar

15. Mokoto, T. M. L.; Lemmerer, A.; Sayed, Y.; Smith, M. G. The Crystal Structure of the Host-Guest Complex: N′-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-Oxo-1,3-Diazinan-1-Yl)butanamide-Diethyl Ether (2/1). Z. Kristallogr. N. Cryst. Struct. 2024, 239, 261–264, https://doi.org/10.1515/ncrs-2023-0515.Search in Google Scholar

16. Zhu, H.; Li, Y.-H.; Xiao, Q.-Q.; Cui, G.-H. Three Luminescent Cd(II) Coordination Polymers Containing Aromatic Dicarboxylate and Flexible Bis(benzimidazole) Ligands as Highly Sensitive and Selective Sensors for Detection of Cr2O72− Oxoanions in Water. Polyhedron 2020, 187, 114648; https://doi.org/10.1016/j.poly.2020.114648.Search in Google Scholar

17. Chen, S.-C.; Zhang, Z.-H.; Huang, K.-L.; Chen, Q.; He, M.-Y.; Cui, A.-J.; Li, C.; Liu, Q.; Du, M. Solvent-controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain, 2D Layer, and 3D Coordination Architectures. Cryst. Growth Des. 2008, 8, 3437–3445; https://doi.org/10.1021/cg8003905.Search in Google Scholar

18. Chen, S.-C.; Zhang, Z.-H.; Huang, K.-L.; Luo, H.-K.; He, M.-Y.; Du, M.; Chen, Q. Alkali-Metal-Regulated Construction of Superhydrophilic ZnII and CdII Coordination Polymers with Perhalogenated Terephthalate Ligands. CrystEngComm 2013, 15, 9613–9622; https://doi.org/10.1039/c3ce41108g.Search in Google Scholar

19. Chen, X.-L.; Shen, Y.-J.; Gao, C.; Yang, J.; Sun, X.; Zhang, X.; Yang, Y.-D.; Wei, G.-P.; Xiang, J.-F.; Sessler, J. L.; Gong, H.-Y. Regulating the Structures of Self-assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J. Am. Chem. Soc. 2020, 142, 7443–7455; https://doi.org/10.1021/jacs.9b13473.Search in Google Scholar PubMed

20. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Definition of the Hydrogen Bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641; https://doi.org/10.1351/pac-rec-10-01-02.Search in Google Scholar

21. Liu, M.; Yin, C.; Chen, P.; Zhang, M.; Parkin, S.; Zhou, P.; Li, T.; Yu, F.; Long, S. sp2C–H⋯Cl Hydrogen Bond in the ConFormational Polymorphism of 4-Chloro-Phenylanthranilic Acid. CrystEngComm 2017, 19, 4345–4354; https://doi.org/10.1039/c7ce00772h.Search in Google Scholar

22. Tresca, B. W.; Zakharov, L. N.; Carroll, C. N.; Johnson, D. W.; Haley, M. M. Aryl C–H⋯Cl− Hydrogen Bonding in a Fluorescent Anion Sensor. Chem. Commun. 2013, 49, 7240–7242; https://doi.org/10.1039/c3cc44574g.Search in Google Scholar PubMed PubMed Central

23. Weng, Q.-Y.; Zhao, Y.-L.; Li, J.-M.; Ouyang, M. Construction of Two Stable Co(II)-Based Hydrogen-Bonded Organic Frameworks as a Luminescent Probe for Recognition of Fe3+ and Cr2O2−7 in H2O. Molecules 2021, 26, 5955; https://doi.org/10.3390/molecules26195955.Search in Google Scholar PubMed PubMed Central

Received: 2024-04-10
Accepted: 2024-06-02
Published Online: 2024-06-20
Published in Print: 2024-10-28

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial 2024 – New developments and changes of Zeitschrift für Kristallographie – New Crystal Structures
  4. New Crystal Structures
  5. Hydrogen bonding and π⋅⋅⋅halogen interactions in the crystal structure of bis(theophyllinium) hexachloridoplatinate(IV) monohydrate
  6. The crystal structure of 6-amino-2-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  7. Crystal structure of poly[(μ4-(3-amino-1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ 4 N:O:O':O')(1-methylpyrroldin-2-one-κ1O)dicopper(II)] – 1-methylpyrroldin-2-one (1/3), C40H48Cu2N12O12
  8. The crystal structure of 18-crown-6-k6O6(2,4,5-trinitroimidazol-1-ido-k1O)potassium(I)
  9. Crystal structure of poly[tetraaqua-bis(μ2-5-bromoisophthalato-κ3O,O:O)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N)dicadmium(II)] dihydrate
  10. Crystal structure of (5R,6S,E)-5-acetoxy-2-methyl-6-((2aR,3R,5aS,5bS,11aR,12aS)-2a,5a,8,8-tetramethyl-9-oxotetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-3-yl)hept-2-enoic acid, C32H48O5
  11. The crystal structure of poly[diaqua-bis(μ2 -thiocyanato-κ2N:O)cobalt(II) monohydrate
  12. The crystal structure of 1,3,5-tri(1H-imidazol-1-yl)benzene–2,3,5,6-tetrachlorobenzene-1,4-dicarboxylic acid (1/1)
  13. Crystal structure of dichlorido-bis(1-[(2-ethyl-benzimidazole-1-yl)methyl]-1H–benzotriazole) cadmium(II), C32H32CdN10OCl2
  14. The crystal structure of N′-(tert-butyl)-N′-(3,5-dimethylbenzoyl)-3-methoxy-N,2-dimethylbenzohydrazide, C23H30N2O3
  15. Crystal stucture of 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide
  16. Crystal structure of bis(μ-benzeneselenolato)-(tetracarbonyl)-{μ-[N-(diphenylphosphanyl)-N-(3-ethynylphenyl)-P,P-diphenylphosphinous amide]} diiron, C48H35Fe2NO4P2Se2
  17. The crystal structure of 2′-(p-tolyl)-4′H-spiro[isochromane-1,1′-naphthalene]-3,4′-dione, C25H18O3
  18. The crystal structure of poly[hexaqua-tetrakis(μ4-pyridine-2,4-dicarboxylate-κ5N: O: O′: O″: O‴)-bi(μ2-pyridine-2,4-dicarboxylate-κ3N: O: O′)-digadolinium(III)tricopper (II)], [Gd2Cu3(C7H3NO4)6(H2O)6] n
  19. Crystal structure of poly[bis(4-(4-(pyridin-4-yl)phenyl)pyridin-1-ium-κ1N)-(μ4-benzene-1,2,4,5-tetracarboxylato-κ5O:O′: O″:O‴:O⁗)-(μ2-2,5-dicarboxyterephthalato-κ2O:O′)dizinc(II)], C52H32N4O16Zn2
  20. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2-carboxy-6-nitrobenzoate monohydrate, C24H25FN4O10
  21. Crystal structure of dichlorido-(1-((3,5-dimethyl-2,3-dihydro-1H-1,2,3-triazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-k1N)zinc(II), C22H24ZnN12Cl2
  22. The crystal structure of (3-chlorothiophene-2-carboxylato-κ2O, O′)-(2,2′-dipyridyl-κ2N,N′)lead(II), C20H12Cl2N2O4S2Pb
  23. Synthesis and crystal structure of (Z)-4-((1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, C19H14FN5O
  24. The crystal structure of the coordination compound catena-poly[(18-crown-6-ether-κ6O6)(4,5-dinitroimidazolato-κ1O)potassium(I)]
  25. Crystal structure of 7-(diethylamino)-3-(trifluoroacetyl)-2H-chromen-2-one, C15H14F3NO3
  26. Crystal structure of dichlorido-1-[(2-ethylimidazole-1-yl)methyl]-1H–benzotriazole κ1N zinc(II), C24H26ZnN10Cl2
  27. Crystal and molecular structure of 5-bromopyridine-2,3-diamine
  28. Crystal structure of catena-poly[bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-k3-O,O:O)hexaqua-dicobalt tetrahydrate], C26H36N4O20Co2
  29. Crystal structure of thiocyanate-κ1N-bis(μ1-2,6-diformyl-4-methylphenol oxime-κ2N,O)-manganese(III) acetonitrile solvate, C21H21MnN6O6S
  30. The crystal structure of pyrrolidin-1-yl pivalate, C9H13NO4
  31. The crystal structure of 2,2′-(2,2-diphenylethene-1,1-diyl)bis(1,4-dimethoxybenzene), C30H28O4
  32. Crystal structure of bis(benzyltrimethylammonium) tetrathiotungstate(VI), {(C6H5CH2)(CH3)3N}2[WS4]
  33. The crystal structure of ethyl (Z)-2-(ethoxymethylene)-3-oxobutanoate, C9H14O4
  34. The crystal structure of (E)-6-bromo-3,5-dimethyl-2-(1-phenylprop-1-en-2-yl)-3Himidazo[4,5b]pyridine, C17H16BrN3
  35. Crystal structure of (3S,3′S,4R,4′S)-3′-(furan-3-yl)-3-hydroxy-4′-methyl-3,5,6′,7′-tetrahydro-1H,3′H-4,5′-spirobi[isobenzofuran]-1,1′(4′H)-dione-methanol (1/1), C21H22O7
  36. Cocrystal structure of progesterone-isophthalic acid, C25H33O4
  37. The crystal structure of 3-(6-fluoro-1H-indol-3-yl)-1-methylquinoxalin-2(1H)-one, C17H12FN3O
  38. Crystal structure of S-(4-carboxybutyl)- l -cysteine
  39. The cocrystal of 2,2′-(hydrazine-1,1-diyl)bis(1H-imidazole-4,5-dicarbonitrile)– methanol (2/3)
  40. Crystal structure of (1′R,2′S,4′R,6′S)-4,6-dihydroxy-1′,8′,8′-trimethyl-3-(3-methylbutanoyl)-4′,8′,6′,1′,7,2′-hexahydro-1H-4′,6′-methanoxanthene-8-carbaldehyde, C23H30O5
  41. Crystal structure of (3,6-di(2-pyridyl)-4-methylphenyl pyridazine-k 2 N,N′)-bis(1-phenyl-pyrazole-κ 2 C,N) iridium(III) hexafluorophosphate, C39H29F6IrN8P
  42. Crystal structure of 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene]thiocarbonohydrazide dimethyl sulfoxide monosolvate, C17H18N4O2S·C2H6OS
  43. Crystal structure of (S)-4-(2-(4-(2-acetyl-5-chlorophenyl)-3-methoxy-6-oxopyridazin-1(6H)-yl)-3-phenylpropanamido)benzoic acid monohydrate, C29H26ClN3O7
  44. The crystal structure of 1,3-bis(2,4-dinitro-1H-imidazol-1-yl)propane
  45. Crystal structure of 4-chlorobenzyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate, C21H19ClO3
  46. Crystal structure of 1-(5-(benzo[d][1,3]dioxol-5-yl)-4-benzyl-1-(4-bromophenyl)-4,5-dihydro-1H-1,2,4-triazol-3-yl)ethan-1-one, C24H20BrN3O3
  47. The crystal structure of (Z)-3′-(2-(1-(3,4-dimethyl-phenyl)-3-methyl-5-oxo-1,5-dihydro-4H-pyrazol-4-ylidene)hydrazinyl)-2′-hydroxy-[1,1′-biphenyl]-3-carboxylicacid ─ methanol (1/1), C26H26N4O5
  48. Crystal structure of (S)-1-phenylpropan-1-aminium (S)-(1-phenylpropyl)carbamate C19H26N2O2
  49. Synthesis and crystal structure of methyl 2-((5-bromo-4-(4-cyclopropylnaphthalen-1-yl)-4H-1,2,4-triazol-3-yl)thio)acetate, C18H16BrN3O2S
  50. The crystal structure of trichlorobis(pyridine-2,6-dithio-κS-carbomethylamido)antimony(III), [SbCl3(C9H11N3S2)2]
  51. Crystal structure of 1,8-dihydroxy-3-{[(triphenylstannyl)oxy]carbonyl} anthracene-9,10-dione, C33H22O6Sn
  52. The crystal structure of (E)-4-(2-(pyridin-4-ylmethylene)hydrazine-1-carbonyl)pyridin-1-ium-2-olate dihydrate, C12H14N4O4
  53. The crystal structure of 6-amino-pyridinium-2-carboxylate, C6H6N2O2
  54. The crystal structure of catena-poly[aqua-nitrato-κ3O,O:O′′-(1,10-phenanthroline-κ2N,N)sodium(I)], C24H18N6O7Na2
  55. Retractions
  56. Retraction of: Crystal structure of bis[diaquaisonicotinatosamarium(III)]-µ-isonicotinato-[diisonicotinatocopper(II)], CuSm2(C6H4NO2)8(H2O)4
  57. Retraction of: Crystal structure of aqua(2,2-bipyridine-k 2 N:N′)(nitrato)-(4-aminobenzoato)cadmium(II) nitrate, [Cd(H2O)(NO3)(C10H8N2)(C7H7NO2)][NO3]
Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0164/html?srsltid=AfmBOooljN6MJc2J8aD2CvVKId3oJ1-eSWO98v3Z0aTBPw1EyruUdbd-
Scroll to top button