Home Physical Sciences The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
Article Open Access

The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5

  • Ming Li , Xiaofei Wang EMAIL logo and Chunyan Mao
Published/Copyright: February 6, 2024

Abstract

Sm2(SO4)3(H2O)5, monoclinic, C2/c (no. 15), a = 15.653(3) Å, b = 9.5369(19) Å, c = 10.199(2) Å, β = 120.36(3)°, V = 1313.9(6) Å3, Z = 1, R gt (F) = 0.0281, wR ref (F 2) = 0.0664, T = 293 K.

CCDC no.: 2303100

1 Source of materials

All reagents are commercially available A. R. grade reagents and are used without further purification: 0.176 g (0.5 mmol) Sm2O3 was added to 2.0 mL of ethylene glycol and 2.0 mL of deionized water solution under stirring, 1.5 mL of 1 M H2SO4 was added dropwise to adjust pH 1.5. The resulting mixture was placed in a 24 mL Teflon-lined steel vessel and heated at 170 °C for 4 days. The autoclave is slowly cooled to room temperature, then the product is filtered and dried in the air for day to obtain colorless block crystals.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.38 × 0.28 × 0.21 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 9.42 mm−1
Diffractometer, scan mode: Rigaku R-AXIS RAPID, ω
θ max, completeness: 27.5°, 99 %
N(hkl)measured, N(hkl)unique, R int: 6284, 1492, 0.080
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 1413
N(param)refined: 118
Programs: SHELX [1, 2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Sm1 0.11951 (2) 0.85634 (2) 0.06717 (2) 0.00974 (14)
S1 0.36140 (8) 0.71166 (11) 0.27428 (12) 0.0105 (2)
S2 0.000000 0.88092 (17) 0.250000 0.0108 (3)
O1 0.2832 (2) 0.8012 (4) 0.2703 (3) 0.0171 (7)
O2 0.3363 (2) 0.5636 (3) 0.2776 (4) 0.0154 (7)
O3 0.4565 (2) 0.7479 (3) 0.4077 (4) 0.0169 (7)
O4 0.3655 (3) 0.7373 (4) 0.1350 (4) 0.0202 (7)
O5 −0.0842 (3) 0.7953 (4) 0.2278 (4) 0.0197 (7)
O6 −0.0273 (2) 0.9686 (4) 0.1158 (3) 0.0164 (7)
O7 0.2460 (3) 1.0092 (4) 0.0459 (4) 0.0250 (8)
H7A 0.294 (3) 0.974 (6) 0.045 (7) 0.037*
H7B 0.234 (4) 1.084 (4) 0.000 (7) 0.037*
O8 0.1254 (3) 0.5981 (4) 0.0973 (4) 0.0259 (8)
H8A 0.169 (4) 0.555 (6) 0.171 (4) 0.039*
H8B 0.105 (4) 0.549 (6) 0.022 (4) 0.039*
O9aa 0.0102 (8) 0.4903 (10) −0.1965 (10) 0.046 (2)
H9 −0.047610 0.451250 −0.257680 0.069*
  1. aOccupancy: 0.5

2 Experimental details

The structure was solved by Direct Methods with the Shelxs and further refined with the Shelxl program. The oxygen-bound H atoms were located on a difference Fourier map and refined with distances O–H = 0.85 Å and (U iso (H) = 1.5U eq (O)) (Tables 1 and 2).

3 Comment

Over the years, efforts have been made to synthesize a variety of one-, two- and three-dimensional inorganic materials [3, 4]. Solvothermal techniques have been used to synthesize various inorganic framework compounds containing anionic components, such as phosphates [5], silicates [6], selenites [7] and sulfates [8, 9]. Among these compounds that have been synthesized and characterized, compounds involving sulfates are a very important family [10, 11]. Compared with the relatively fixed coordination it is easy to form stable three-dimensional structures, intricate topological structures and types [12], [13], [14]. In addition, lanthanide compounds have become an important class of luminescent materials due to the unique photophysical properties of lanthanide centers, such as long lifetime, large Stokes shift, high quantum yield and linear emission bands generated by 4f–4f transitions [15, 16]. At present, many lanthanide sulfates have been reported in the literatures, such as Sm2(SO4)(H2O)8 [17], La2(SO4)3(H2O)9 [18], Eu2(SO4)3(H2O)8 [19], but the three-dimensional inorganic framework for lanthanide sulfates has been relatively limited.

The title compound is isomorphous with Nd2(SO4)3(H2O)5 [20]. The space group of the title compound is C2/c. As shown in the Figure (left part), the Sm atom is coordinated by eight oxygen atoms in a dodecahedral configuration, in which six O atoms (O1, O2, O3, O4, O5, O6) are derived from five sulfate radical groups, and two O atoms (O7, O8) are derived from two coordinating water molecules. The long distances of the Sm–O bond lengths are 2.365(3)–2.554(4) Å, and the corresponding bond angles of the formed O–Sm–O bond are 52.4(1)°–150.2(1)°. The two sulfate groups have tetrahedral coordination, and the S–O bond distances are 1.463(3)–112.4(3) Å, corresponding to S–O–S bond angles of 106.0(2)° to 112.4(3)°. The two sulfate groups (S1 and S2 groups) are both in the μ 4 coordination mode. The skeleton structure of the compound is formed by the adjacent SmO8 and SO4 polyhedra sharing a single corner or edge. The oxygens of the sulfate groups corresponding to S2 connect four Sm atoms forming one-dimensional chains along [001] direction. The SO4 groups corresponding to S1 connect three Sm atoms interspersed in the above chains. The adjacent chains are further connected by O1 (for S1 groups) forming the three-dimensional framework (Figure, right part).


Corresponding author: Xiaofei Wang, ZhiEn Middle School of NingHai, Ningbo, Zhejiang 315699, P.R. China, E-mail:

References

1. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Dan, M., Behera, J. N., Rao, C. N. R. Organically templated rare earth sulfates with three-dimensional and layered structures. J. Mater. Chem. 2004, 14, 1257–1265; https://doi.org/10.1039/b314663d.Search in Google Scholar

4. Ding, S. H., Xu, Y., Nie, L. B., Feng, W. J. Hydrothermal synthesis and crystal structure of a novel 3-D porous lanthanum sulfate. J. Clust. Sci. 2006, 17, 627–636; https://doi.org/10.1007/s10876-006-0078-5.Search in Google Scholar

5. Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S., Ayi, A. A. Aufbau principle of complex open-framework structures of metal phosphates with different dimensionalities. Acc. Chem. Res. 2001, 34, 80–87. https://doi.org/10.1021/ar000135+.10.1021/ar000135+Search in Google Scholar PubMed

6. Ananias, D., Ferdov, S., Paz, F. A. A., Ferreira, R. A. S., Ferreira, A., Geraldes, C. F., Rocha, J., Lin, Z. Photoluminescent layered lanthanide silicate nanoparticles. Chem. Mater. 2008, 20, 205–212; https://doi.org/10.1021/cm702524n.Search in Google Scholar

7. Kemnitz, E., Troyanov, S. I. Hydrogen bonding systems in acid metal sulfates and selenates. Adv. Mol. Struct. Res. 1998, 4, 79–114.10.1016/S1087-3295(98)80005-4Search in Google Scholar

8. Rao, C. N. R., Behera, J. N., Dan, M. Organically-templated metal sulfates, selenites and selenates. Chem. Soc. Rev. 2006, 35, 375–387; https://doi.org/10.1002/chin.200625218.Search in Google Scholar

9. Zhang, D., Lu, Y., Zhu, D. R., Xu, Y. (C4N2H12)3[Ln3(OH)(SO4)7] (Ln = Sm, Eu, and Tb): a series of honeycomb-like open-framework lanthanide sulfates with extra-large channels containing 24-membered rings. Inorg. Chem. 2013, 52, 3253–3258; https://doi.org/10.1021/ic3027682.Search in Google Scholar PubMed

10. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714; https://doi.org/10.1038/nature01650.Search in Google Scholar PubMed

11. Zhao, X., Wong, M., Mao, C. Y., Trieu, T. X., Zhang, J., Feng, P. Y., Bu, X. H. Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation. Angew. Chem., Int. Ed. 2014, 136, 12572–12575; https://doi.org/10.1021/ja5067306.Search in Google Scholar PubMed

12. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem., Int. Ed. 2015, 54, 8604–8641; https://doi.org/10.1002/anie.201412168.Search in Google Scholar PubMed

13. Hu, J. Y., Liu, R., Zhai, S. L., Wu, Y. N., Zhang, H. Z., Cheng, H. T., Zhu, H. J. AIE-active molecule-based self-assembled nano-fibrous films for sensitive detection of volatile organic amines. J. Mater. Chem. C 2017, 5, 11781–11789; https://doi.org/10.1039/c7tc03857g.Search in Google Scholar

14. Lin, J., Liu, Q., Yue, Z. H., Diefenbach, K., Cheng, L. W., Lin, Y. J., Wang, J. Q. Expansion of the structural diversity of F-element bearing molybdate iodates: synthesis, structures, and optical properties. Dalton Trans. 2019, 48, 4823–4829; https://doi.org/10.1039/c8dt05120h.Search in Google Scholar PubMed

15. Qie, M. Y., Lin, J., Kong, F., Silver, M. A., Yue, Z. H., Wang, X. M., Zhang, L. J., Bao, H. L., Albrecht–Schmitt, T. E., Wang, J. Q. A large family of centrosymmetric and chiral F-element-bearing iodate selenates exhibiting coordination number and dimensional reductions. Inorg. Chem. 2018, 57, 1676–1683; https://doi.org/10.1021/acs.inorgchem.7b03116.Search in Google Scholar PubMed

16. Lin, J., Diefenbach, K., Kikugawa, N., Baumbach, R. E., Albrecht–Schmitt, T. E. Dimensional and coordination number reductions in a large family of lanthanide tellurite sulfates. Inorg. Chem. 2014, 53, 8555–8564; https://doi.org/10.1021/ic501163x.Search in Google Scholar PubMed

17. Kepert, C. J., Junk, P. C., Skelton, B. W., White, A. H. Structural systematics of rare earth complexes. XX (maximally) hydrated rare earth sulfates and the double sulfates (NH4)Ln(SO4)2·4H2O(Ln = La, Tb). Aust. J. Chem. 1999, 52, 601–616; https://doi.org/10.1071/ch98050.Search in Google Scholar

18. Wei, D. Y., Zheng, Y. Q. Crystal structure of terbium sulfate octahydrate, Tb2(SO4)38H2O, and of dysprosium sulfate octahydrate, Dy2(SO4)38H2O. Z. Kristallogr. N. Cryst. Struct. 2003, 218, 23–24; https://doi.org/10.1524/ncrs.2003.218.1.23.Search in Google Scholar

19. Xu, Y., Ding, S. H., Zheng, X. F. Hydrothermal synthesis, crystal structure and properties of 2-D and 3-D lanthanide sulfates. J. Solid State Chem. 2007, 180, 2020–2025; https://doi.org/10.1016/j.jssc.2007.05.005.Search in Google Scholar

20. Larsson, L. O., Linderbrandt, S., Niinisto, L., Skoglund, U. The crystal structure of neodymium sulphate pentahydrate Nd2(SO4)3(H2O)5. Suomen kemistilehti. B 1973, 314–322.Search in Google Scholar

Received: 2023-11-02
Accepted: 2024-01-17
Published Online: 2024-02-06
Published in Print: 2024-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Solvothermal synthesis and crystal structure of aqua-tris(p-acetamidobenzoate-κ2O,O′)-(2,2′-bipyridine-κ2N,N′)terbium(III) - water - methanol (1/1/1)
  4. Crystal structure of hexaaquazinc(II) catena-poly[bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] hexahydrate C26H36N4O20Zn2
  5. The crystal structure of valinyl-N-ium-4-(5-(thiophen-2-yl)isoxazol-3-yl)phenyl trifluoroacetate
  6. Crystal structure of bis(3,5-diisopropyl-1H-pyrazol-4-ammonium) tetrafluoroterephthalate, 2[C9H18N3][C8F4O4]
  7. Crystal structure of aqua-octakis(μ3-salicylato)-(1,10-phenanthroline)-(acetonitrile)-dicobalt(II)-trititanium(IV), C70H45N3O25Co2Ti3
  8. Crystal structure of catena-poly[aqua-(μ2-4,4′-diimidazole diphenyl ether-κ2N:N′)-(sulfato-κ1O)-cobalt(II)] – dimethylformamide (2/1), C39H37CoN9O8S
  9. Crystal structure of (5R,8R,9R,10R,12R, 13R,14R,17S)-2-(E-3-fluorobenzylidene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl) hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C37H53FO3
  10. Crystal structure of (Z)-4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenyl diphenylphosphinate, C30H25O7P
  11. Crystal structure of 3-((5-methylpyridin-2-yl)amino)-1-phenylpropan-1-one, C15H16N2O
  12. The crystal structure of (R)-9-(5-methoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-thioxanthene, C28H22OS
  13. Crystal structure of diaqua-bis[1-(1-(hydroxymethyl)-1H-pyrazol-3-yl)-5-methyl-1H-1,2,3-triazole-4-carboxylato-κ2N,O)] manganese(II), C16H20MnN10O8
  14. The crystal structure of t-butyl 7-[4-(4-fluorophenyl)-2-[(methanesulfonyl)(methyl)amino]-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoate, C26H36FN3O6S
  15. The crystal structure of samarium sulfate pentahydrate, Sm2(SO4)3(H2O)5
  16. The crystal structure of [triaqua-(8-carboxymethoxy-quinoline-2-carboxylate-κ 4 N,O,O,O)-zinc(II)] monohydrate, C12H15NO9Zn
  17. The crystal structure of 2,3-difluoro-11H-benzo-[4,5]imidazo[2,1-a]isoindol-11-one, C14H6F2N2O
  18. The crystal structure of 2,3-di(9H-carbazol-9-yl)-9H-fluoren-9-one, C37H22N2O
  19. The crystal structure of 5-(2-chloro-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-10,11-dihydro-5H-dibenzo[b,f]azepine, C40H39ClN2
  20. Crystal structure of 2-bromo-1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one, C18H15BrO4
  21. Crystal structure of bis(μ2-benzenesulfonato-κ2O:O′)-bis(μ2-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))-bis(2-methoxyphenolato-κ6O,O′:O′,N,N′,O′′:O′′,O′′′))disodium(I)dicopper(II)
  22. The crystal structure of (E)-1,2-bis(benzo[e][1,2]azaborinin-2(1H)-yl)ethene, C18H16B2N2
  23. Crystal structure of 3-oxo-urs-12-en-28-benzyl ester, C37H52O3
  24. The crystal structure of ethyl (E)-1-chloro-3-(4-chloro-1-methyl-1H-indole-2-carbonyl)-4-oxo-2-phenylcyclooct-2-ene-1-carboxylate, C27H25Cl2NO4
  25. The crystal structure of 4,4′-((5-bromo-2-iodo-1,3-phenylene)bis(oxy))bis(tert-butylbenzene) ─ ethanol (2/1), C26H28BrIO2
  26. Crystal structure of (E)-1-(4-(benzyloxy)-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C18H19NO3
  27. The crystal structure of N1,N3-bis(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)\ propanediamide hydrate, C25H26N6O4, 2(H2O)
  28. The crystal structure of 2,5-bis[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohexa-2,5-diene-1,4-dione, C28H26N6O4
  29. Crystal structure of 3,4-bis[2-(hydroxymethyl)-pyrrolidin-1-yl] cyclobut-3-ene-1,2-dione hydrate, C14H22N2O5
  30. The crystal structure of 2-(3,4–dichlorobenzyl)-1H-benzimidazole, C14H10Cl2N2
  31. The crystal structure of 2-(2-((4,6-dimethoxypyrimidin-2-yl)oxy)phenyl)-4-(piperidin-1-yl)-5H-chromeno[2,3-d]pyrimidine, C28H27N5O4
  32. The crystal structure of 6-(benzofuran-2-yl)-2-oxo-4,5-diphenyl-3,4-dihydro-2H-pyran-3-carbonitrile, C26H17NO3
  33. Crystal structure of N-(4-bromobenzyl)-3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C18H15BrF2N4O
  34. The crystal structure of the host-guest complex: N-{5-[2-(2,6-dimethylphenoxy)acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide-diethyl ether (2/1)
  35. The crystal structure of (Z)-4-amino-N-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H17N3O2
  36. The crystal structure of diethyl 1,4-dihydro-2,6-dimethyl-4-(3-cyanophenyl)-3,5-pyridinedicarboxylate, C20H22N2O4
  37. Crystal structure of 3-(5-((4-(difluoromethoxy)phenyl) sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl) oxetane-3-carboxamide, C17H19F2N3O5S
  38. Crystal structure of 2-((2,6-dichloro-4-(3,5-dimethylisoxazol-4-yl)phenyl)amino)-N-(2-(4-methylpiperazin-1-yl)ethyl)benzamide hydrate, C25H37Cl2N5O6
  39. Crystal structure of 3-(benzo[d]thiazol-2-yl)-5-bromo-2-hydroxybenzaldehyde, C14H8BrNO2S
  40. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(pyridin-2-yl)-1H-pyrazole-4-carboxamide, C11H10F2N4O
  41. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-isopropyl-1H-imidazol-3-ium hexafluoridophosphate(V), C20H34F12N4P2
  42. Crystal structure of ethyl 5,6-dichloro-2-methyl-2,3-dihydro-1 H-benzo[d]imidazole-2-carboxylate, C11H12Cl2N2O2
  43. The crystal of structure of (OC-6-22)-pentakis(acetonitrile)bromidoruthenium(II)bromide monohydrate, C10H15Br2N5Ru
  44. Crystal structure of (2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-(((4aS,5R,6S)-1-oxo-5-vinyl-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl)oxy)tetrahydro-2H-pyran-3-yl 2,3-dihydroxybenzoate hydrate, C23H26O12·H2O
  45. The crystal structure of (E)-4-amino-N′-(1-(4-fluorophenyl)propylidene)benzohydrazide, C16H16FN3O
  46. The crystal structure of 2′-(9H-carbazol-9-yl)-[1,1′-binaphthalen]-2-amine, C32H22N2
  47. Crystal structure of poly[μ3-diiodido-[μ2-di(1H-pyrazol-1-yl)methane-κ2N,N′)]dicopper(I)], C7H8Cu2I2N4
  48. Crystal structure of 3-amino-N′-hydroxy-1H-pyrazole-4-carboximidamide, C4H7N5O
  49. The crystal structure of 1,3-diacetyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione, C8H10O4N4
  50. Crystal structure of catena-poly[aqua-(μ2-1,4-diazabicyclo[2.2.2]octane-k2N: N′)-bis(sorbato-κ1O)-copper(II), C18H28CuN2O5
  51. Crystal structure of catena-poly[triaqua-(μ2 -1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3O,O′:O′′)manganese(II)], C12H12N2O8Mn
  52. The crystal structure of [hexaaquamagnesium(II)] 4-[(pyridine-4-carbonyl)-amino]-phthalate trihydrate, C14H26N2O14Mg
  53. Crystal structure of 1-(p-tolylphenyl)-4-(2-furoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O3
  54. The crystal structure of bis(1,4,7,10,13-pentaoxacyclopentadecane)-potassium(I) dichloridocopper(I), C20H40Cl2CuKO10
  55. The crystal structure of tris(tetra-n-butylammonium) hexanitrato-κ2O,O′-lanthanium(III) C48H108N9O18La
Downloaded on 18.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0480/html?lang=en&srsltid=AfmBOoqc20PGns3nEvOZUaOnPopb5KgweBPZzVXTWgHywIDgFkELjMC8
Scroll to top button