Startseite Crystal structure of niobium trigallide, NbGa3
Artikel Open Access

Crystal structure of niobium trigallide, NbGa3

  • Jasper Arne Baldauf , Theresa Block und Rainer Pöttgen ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Januar 2023

Abstract

NbGa3, tetragonal, I4/mmm (no. 139), a = 3.7930(6) Å, c = 8.7049(13) Å, V = 125.24(3) Å3, Z = 2, R gt (F) = 0.0303, wR ref (F2) = 0.0702, T = 293 K.

CCDC no.: 2236341

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
Crystal structure of NbGa3 (niobium in blue, the two crystallographically independent gallium sites in magenta). The unit cell is drawn left. The coordination polyhedra along with the site symmetries are given at the right-hand side.
Figure 1:

Crystal structure of NbGa3 (niobium in blue, the two crystallographically independent gallium sites in magenta). The unit cell is drawn left. The coordination polyhedra along with the site symmetries are given at the right-hand side.

Table 1:

Data collection and handling.

Crystal: Silvery irregular shape
Size: 0.11 × 0.09 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 36.0 mm−1
Diffractometer, scan mode: Stoe StadiVari, omega
θmax, completeness: 34.9°, 99%
N(hkl)measured, N(hkl)unique, Rint: 1546, 106, 0.029
Criterion for Iobs, N(hkl)gt: Iobs > 3σ(Iobs), 106
N(param)refined: 8
Programs: X-Area [1], JANA2006 [2], SUPERFLIP [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Ga1 0 0 0.5 0.0201 (2)
Ga2 0 0.5 0.25 0.0192 (2)
Nb 0 0 0 0.0164 (2)

Source of material

The title compound NbGa3 has been obtained during phase analytical studies when searching for a solid solution V2−xNb x Ga5. Starting materials were pieces of vanadium (Alfa Aesar, 99.7%) and of niobium sheets (WHS Sondermetalle, 99.6%) as well as gallium pieces (Johnson Matthey, 99.9%). Samples with x = 1 and 2 were weighed in tantalum tubes which were arc-welded and sealed in evacuated silica ampoules for oxidation protection. The tubes were heated within 5 h to 1273 K, kept for 12 h, cooled to 1123 K within 5 h, kept for another 60 h followed by cooling to room temperature within 30 h. X-ray powder pattern revealed crystallization of NbGa3 from both samples. Single crystals of NbGa3 were finally obtained from an x = 2 sample in an equimolar NaCl/KCl flux.

Experimental details

The polycrystalline product was investigated by means of powder X-ray diffraction (Stoe Stadi P, image plate detector, equipped with Cu-Kα1 radiation and an image plate detection system (Fujifilm, BAS-1800); a-quartz (a = 491.30 and c = 540.46 pm) as an internal standard. The refined powder lattice parameters were a = 379.2(1) and c = 870.1(4) pm. The NbGa3 crystals were selected from the x = 2 sample after dissolving the NaCl/KCl flux with demineralized water. Single crystal X-ray diffraction was performed at room temperature on a Stoe StadiVari (Mo micro focus source and a Pilatus detection system) diffractometer. The Gaussian-shaped profile of the micro focus X-ray source required scaling along with numerical absorption corrections. The starting atomic parameters were deduced with the charge-flipping algorithm [3] implemented in Superflip [4] and the structure was refined on F2 with the Jana2006 software package [2]. Separate refinements of the occupancy parameters confirmed the ideal composition.

Comment

NbGa3, the most gallium-rich phase in the Nb–Ga system, has only been described on the basis of powder X-ray diffraction data [5], [6], [7], [8], [9], [10], [11]. This gallide has no direct technological application; however it is used as precursor material for the preparation of superconducting Nb3Ga according to 8Nb + NbGa3 → 3Nb3Ga [12]. The single crystal data confirm the TiAl3 type [13] structure, which is a superstructure variant of the fcc type [14, 15]. The figure shows the stacking of two fcc subcells with complete niobium-gallium ordering. The symmetry reduction to space group I4/mmm leads to two crystallographically independent gallium sites. The difference in size between niobium (covalent radius [16] 134 pm) and gallium (125 pm) results in a substantial distortion of the unit cell. The c/a ratio increases to 2.295 and this leads to slightly elongated coordination polyhedra, which all derive from the cuboctahedral arrangement. Since all atoms occupy special positions, one can directly calculate the interatomic distances from the lattice parameters. The niobium atoms (4/mmm) have 12 gallium neighbors at 4 × 268 and 8 × 289 pm (see figure), slightly longer than the sum of the covalent radii of 259 pm for Nb + Ga. Also the Ga1 atoms have the site symmetry 4/mmm with 4 × 268 pm Ga1–Nb and 8 × 289 pm Ga1–Ga2. A lower site symmetry 4 m 2 occurs for the Ga2 atoms with 4 × 268 pm Ga2–Ga2, 4 × 289 pm Ga2–Nb and 4 × 289 pm Ga2–Ga1. The Ga2–Ga2 distances are comparable to elemental gallium (1 × 244 and 6 × 270–279 pm) [17]. The four niobium atoms around Ga2 have a strongly distorted tetrahedral arrangement with Nb–Ga2–Nb angles of 82.1° and 124.6°.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for the intensity data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. X-Area. The Stoe Single Crystal Diffraction Software Package; STOE & Cie GmbH: Darmstadt Germany.Suche in Google Scholar

2. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

3. Palatinus, L. The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Suche in Google Scholar

4. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

5. Schubert, K., Meissner, H. G., Pötzschke, M., Rossteutscher, W., Stolz, E. Einige Strukturdaten metallischer Phasen. Naturwissenschaften 1962, 49, 57; https://doi.org/10.1007/bf00595382.Suche in Google Scholar

6. Pötzschke, M., Schubert, K. Zum Aufbau einiger zu T4–B3 homologer und quasihomologer Systeme. II. Die Systeme Titan–Aluminium, Zirkonium–Aluminium, Hafnium–Aluminium, Molybdän–Aluminium und einige ternäre Systeme. Z. Metallkd. 1962, 53, 548–560; https://doi.org/10.1515/ijmr-1962-530810.Suche in Google Scholar

7. Baron, V. V., Myzenkova, L. F., Savitskii, E. M., Gladyshevskii, E. I. The gallium-niobium system. Russ. J. Inorg. Chem. 1964, 9, 1172–1174.Suche in Google Scholar

8. Meissner, H. G., Schubert, K. Zum Aufbau einiger zu T5–Ga homologer und quasihomologer Systeme. I. Die Systeme Vanadium–Gallium, Niob–Gallium und Tantal–Gallium und die Struktur von Ti6Sn5(h). Z. Metallkd. 1965, 56, 475–484.10.1515/ijmr-1965-560712Suche in Google Scholar

9. Girgis, K. Mischkristallreihe NbAl3–NbGa3. Naturwissenschaften 1970, 57, 193c; https://doi.org/10.1007/bf00592978.Suche in Google Scholar

10. Belgacem Bouzida, A., Notin, M., Hertz, H. Determination par calorimetrie indirecte de l’enthalpie de formation du compose intermetallique Ga3Nb. Scripta Metall. Mater. 1991, 25, 431–436; https://doi.org/10.1016/0956-716x(91)90206-g.Suche in Google Scholar

11. Lue, C. S., Su, T. H., Xie, B. X., Cheng, C. C. Comparative NMR study of hybridization effect and structural stability in D022-type NbAl3 and NbGa3. Phys. Rev. B 2006, 74, 094101; https://doi.org/10.1103/physrevb.74.094101.Suche in Google Scholar

12. Inoue, K., Kikuchi, A., Iijima, Y., Yoshida, Y. Superconducting properties of rapidly heated and quenched Nb3Ga wires. IEEE Trans. Appl. Supercond. 2003, 13, 3442–3445; https://doi.org/10.1109/tasc.2003.812351.Suche in Google Scholar

13. Brauer, G. Kristallstruktur intermetallischer Verbindungen des Aluminiums mit Titan, Zirkon, Thorium, Niob und Tantal. Naturwissenschaften 1938, 26, 710; https://doi.org/10.1007/bf01590179.Suche in Google Scholar

14. Sluiter, M. H. F. Some observed bcc, fcc, and hcp superstructures. Phase Transit. 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Suche in Google Scholar

15. Pöttgen, R. Coloring, distortions and puckering in selected intermetallic structures from the perspective of group-subgroup relations. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar

16. Emsley, J. The elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

17. Donohue, J. The structures of the elements; Wiley: New York, 1974.Suche in Google Scholar

Received: 2023-01-04
Accepted: 2023-01-15
Published Online: 2023-01-30
Published in Print: 2023-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of methyl 2-((4-chloro-2-fluoro-6-((2,2,2-trifluoroethyl) thio)phenoxy)methyl)benzoate, C17H13ClF4O3S
  4. The crystal structure of 3-hydroxy-5-oxo-4-propanoylcyclohex-3-ene-1-carboxylic monohydrate, C10H14O6
  5. Crystal structure of 2-({[5-(adamantan-2-yl)-2-sulfanylidene-1,3,4-oxadiazolidin-3-yl]methyl}amino)benzonitrile, C20H22N4OS
  6. Crystal structure of 1-(3-bromopropyl)-2-((4-chlorophenoxy)methyl)-4-methyl-1H-benzo[d]imidazole, C18H18BrClN2O
  7. Crystal structure of 2-methoxy-6-[(2-morpholin-4-yl-phenylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone, C18H19N3O5
  8. The crystal structure of 2-(7-(2,3-dimethoxyphenyl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5-yl)-3-methoxyphenol, C20H18N4O4
  9. The crystal structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione dihydrate, C20H22N2O8
  10. Crystal structure of 3,5,7-trimethoxy-3′,4′-methylenedioxy-flavone, C19H16O7
  11. The crystal structure of strictic acid, C20H26O3
  12. Crystal structure of 1,1′-(pyrazine-1,4-diyl)-bis(propan-2-one), C10H14N2O2
  13. The crystal structure of 1-(adamantan-1-yl)-3-(4-chlorophenyl)urea, C17H21ClN2O
  14. The crystal structure of (2R,6′R)-2′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-2′-ene-3,4′-dione, C16H14Cl2O5
  15. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-3-((4-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]-phenanthren-17-yl)ethan-1-one, C28H41NO2
  16. Crystal structure of N-2,6-difluorobenzoyl-N′-[1-(3-chloro-4-methyl-phenyl)-4-cyano-1H-pyrazol-5-carbamoyl]urea, C19H12ClF2N5O2
  17. Crystal structure of (−)-β-D-19-glucopiranosyl-9,15-dihydroxy kaurenoate, C26H40O9
  18. Crystal structure of 7-hydroxy-6-(2-hydroxyethyl)-2H-chromen-2-one, C11H10O4
  19. Crystal structure of S-(benzo[d]thiazol-2-yl)-N-(tert-butyl)thiohydroxylamine, C11H14N2S2
  20. Crystal structure of poly[di-µ2-aqua-aqua-nitrato-κ2O,O′-(µ3-2-nitroisophthalato-κ4O,O′:O″:O′″)barium(II)natrium(II)] monohydrate, C8H11BaN2NaO13
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2 N,O)-cobalt(II) dihydrate, C14H16N6O8Co
  22. Crystal structure of (S,E)-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-4-yl)-2,3- dihydroquinazolin-4(1H)-one monohydrate, C19H15N5O⋅H2O
  23. Synthesis and crystal structure of 5-(8-(((5-carboxypentyl)ammonio)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxy-3-nitrobenzenesulfonate monohydrate, C22H24N2O12S
  24. Synthesis and crystal structure of 8-bromo-3-(1H-pyrazole-1-carbonyl)-2H-chromen-2-one, C13H7BrN2O3
  25. Crystal structure of E-7-fluoro-2-(4-methoxy-3-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  26. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-((3,5-dimethylphenyl)carbamoyl)-nicotinamide, C30H28Cl2N6O4
  27. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-allyl-1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C10H12F6N2P
  28. Crystal structure of (E)-7-bromo-2-(4-(4-methylpiperazin-1-yl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23BrN2O
  29. Crystal structure of pentacarbonyl-(μ2-ethane-1,2-dithiolato-κ4S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1P)diiron (Fe–Fe), C26H21Fe2O5PS2
  30. Crystal structure of 9-(2-chloroethoxy)-4-(4-methoxy-3-(trifluoromethyl)phenyl)- 5,6-dihydrobenzo[h]quinazolin-2-amine, C22H19ClF3N3O2
  31. Crystal structure of triaqua-[5-bromo-2-(carboxylatomethoxy)benzoate-κ3 O,O′,O″]nickel(II), C9H11BrNiO8
  32. The crystal structure of 4,4′-dichloro-3,5′-diphenyl-1′H-1,3′- bipyrazole, C18H12Cl2N4
  33. The crystal structure of bis(1H-pyrazole-carboxamidine-κN,N′)bis(nitrato-κO)-copper(II), C8H12CuN10O6
  34. Synthesis and crystal structure of 3-bromo-4-phenyl-2H-chromene, C15H11BrO
  35. Crystal structure of (E)-5-(diethylamino)-2-((morpholinoimino)methyl)phenol, C15H23N3O2
  36. Crystal structure of niobium trigallide, NbGa3
  37. Crystal structure of dimethyl 4,4′-(((1R, 2R)-cyclohexane-1,2-diyl)bis(azanediyl))dibenzoate, C22H26N2O4
  38. Crystal structure of dimethyl 4,4′-((4R, 5R)-4,5-diphenylimidazolidine-1,3-diyl)dibenzoate, C31H28N2O4
  39. The crystal structure of 2-(2-bromophenyl)-4-phenylbenzo[b][1,4]oxaphosphinine 4-oxide, C20H14BrO2P
  40. The crystal structure of 3-hydroxy-2-nitroestra-1,3,5(10)-trien-17-one, C18H21NO4
  41. Crystal structure of catena-poly[[μ2-1,3-bis[(1H-imidazol-1- yl)methyl]benzene-N:N′]-(μ2–D–camphorato-O, O′: O″, O‴)cadmium(II)], C48H56Cd2N8O8
  42. Crystal structure of N-(4-bromophenyl)-4-[3-(trifluoromethyl)phenyl]-piperazine-1-carbothioamide, C18H17BrF3N3S
  43. The crystal structure of cis-Dicyano-bis(2,2′-bipyridine)k2N,N′-chromium(III) hexafluorophosphate, C22H16N6F6PCr
  44. Crystal structure of 4-((6-bromohexyl)oxy)-2-hydroxybenzaldehyde, C13H17BrO3
  45. Crystal structure of hydrazinium methanesulfonate, CH8N2O3S
  46. Crystal structure of 1-(2-iodobenzoyl)-6-methoxy-1H-indole-3-carbaldehyde, C17H12INO3
  47. Crystal structure of bis(acridinium) tetrabromidomanganate(II), C26H20Br4MnN2
  48. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene)) bis(2-(tert-butyl)phenol), C22H28N2O2
  49. The crystal structure of the cocrystal di-μ2-chlorido-tetramethyl-tetraphenyl-di-μ3-oxido-dichloridotetratin(IV) – diphenyl-methyl-chloridotin(IV)(1/2), C54H58Cl6O2Sn6
  50. Crystal structure of (3a7R,13bR)-3-((1R)-1-hydroxy-1-(5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3a,11,11,13b-tetramethyl-2,3,3a,4,5,11,11a,12,13,13b-decahydroindeno[5′,4′:4,5] cyclohepta[1,2-c]oxepin-9(1H)-one, C30H40O5
  51. Crystal structure of 1-(4-methoxyphenyl)-2-phenoxyethan-1-one, C15H14O3
  52. Crystal structure of trans-tetrakis(3-phenylpyridine-κN)bis(thiocyanato-κN)nickel(II), C46H36N6NiS2
  53. Crystal structure of sodium catena-poly[bis(thiourea-κ1S)-tetrakis(μ2-thiourea-κ2S,S)tricopper(I)] difumarate, C14H29Cu3N12NaO8S6
  54. Crystal structure of bis(benzylamine-κ1N)-bis((E)-2-methyl-3-phenylacrylato-κ1O)copper(II), C34H36CuN2O4
  55. The crystal structure of 3,4-dihydroxybenzoic acid – 3-[7-{[2-(3,4-difluorophenyl)cyclopropyl]amino}-5-(propylsulfanyl)-3H-[1,2,3] triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol – water (1/1/1), C30H36F2N6O9S
  56. Crystal structure of catena-poly[dipyridine-bis(pyridine-2-carboxylato-κ 2 N,O)-bis(μ 2-pyridine-2-carboxylato-κ 2 N,O)-dinickel(II)], C34H26N6Ni2O8
  57. The crystal structure of 1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)-3-(2,4,5-trifluorobenzyl)-1,3,5-triazinane-2,4,6-trione, C14H11F3N6O3
  58. Crystal structure of (E)-2-((Z)-2-((1S,4R)-3,3-dimethylbicyclo[2.2.1] heptan-2-ylidene)ethylidene)hydrazine-1-carbothioamide, C24H38N6S2
  59. Crystal structure of photochromic 3-(5-(2,5-dimethylthiophen-3-yl)-2,2,3,3,4,4-hexafluorocyclopentyl)-2-methylbenzo[b]-thiophene, C20H14F6S2
  60. Crystal structure of bis(2,5,5,7-tetramethyl-1,4-diazepane-1,4-diium) diaqua-bis(1,2-diaminopropane)copper(II) bis(μ6-oxido)tetrakis(μ3-oxido)-tetradecakis(μ2-oxido)-octaoxido-decavanadium(V) – water (1/4), C24H76CuN8V10O34
  61. Crystal structure of 1,2,3,5,13-pentamethoxy-6,7-dimethyl-1,2,3,4,4a,5,6,7,8,13b-decahydrobenzo[3′,4′]cycloocta[1′,2′:4,5]benzo[1,2-d][1,3]dioxole, C24H30O7
  62. Crystal structure of bis(6-carboxyhexyl)-4,4′-bipyridinium dibromide – 2,6-dihydroxynaphthalene (1/2), C42H46Br2N2O8
  63. Crystal structure of methyl 2-(2-chloroacetyl)-1-(4-(methoxycarbonyl)phenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H21ClN2O5
  64. Crystal structure of bis(dimethylammonium) poly[{μ4-1,1ʹ-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato)-κ6N4O2}zinc(II)], C22H26N6O8Zn
  65. Crystal structure of 2-(2-(4-methoxyphenyl)-2H-indazol-3-yl)acetonitrile, C16H13N3O
  66. Crystal structure of (E)-7-methoxy-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23NO3
  67. The crystal structure of N′1,N′2-bis((E)-3-(tert-butyl)-2-hydroxybenzylidene)oxalohydrazide, C24H30N4O4
  68. The crystal structure of trimethyl 2,2′,2′′-(benzene-1,3,5-triyltris(oxy))triacetate, C15H18O9
  69. Crystal structure of bis(N,N-dimethylformamide-κO)-bis(pyridine-2-carboxylato-κ2N,O)-bis(μ2-pyridine-2-carboxylato-κ2N,O)-dinickel(II), C30H30N6Ni2O10
  70. Crystal structure of bis(μ2-1-pyrenecarboxylato-κ3O,O′:O′)-bis(1-pyrenecarboxylato-κ2O,O′)-(benzimidazole-κ1N)dicadmium(II), C82H48Cd2N4O8
  71. One-pot synthesis and crystal structure of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate, C21H23N5O6
  72. The crystal structure of 1-(2-fluorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-carbonitrile, C18H13FN2O2
  73. Crystal structure of bis(trimethylphenylammonium) aqua-oxido-octathiotritungstate, (Me3PhN)2[W3OS8(H2O)]
  74. The crystal structure of trichlorido[N-[(2-oxyphenyl)methylidene]phenylglycinemethylester-κ3O,N,O′]-tin(IV) – methylene chloride (1/1), C16H14Cl3NO3Sn·CH2Cl2
  75. The crystal structure of furan-2,5-diylbis((4-chlorophenyl)methanol), C18H14Cl2O3
  76. The crystal structure of hexalithium decavanadate hexadecahydrate, H32Li6O44V10
  77. Crystal structure of ethyl 4-{[5-(adamantan-1-yl)-2-sulfanylidene-2,3-dihydro-1,3,4-oxadiazol-3-yl]methyl}piperazine-1-carboxylate, C20H30N4O3S
  78. Crystal structure of aqua(μ2-2,2′,2″-((nitrilo)tris(ethane-2,1-diyl(nitrilo)methylylidene))tris (6-ethoxyphenolato))(pentane-2,4-dionato-κ2O,O′)-dinickel(II), C38H48N4Ni2O9
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0007/html
Button zum nach oben scrollen