Home Physical Sciences Crystal structure of hydrazinium methanesulfonate, CH8N2O3S
Article Open Access

Crystal structure of hydrazinium methanesulfonate, CH8N2O3S

  • Steven P. Kelley , Valeri V. Mossine ORCID logo EMAIL logo and Thomas P. Mawhinney
Published/Copyright: January 30, 2023

Abstract

CH8N2O3S, monoclinic, P21/c (no. 14), a = 9.7583 (16) Å, b = 5.4033 (9) Å, c = 10.4729 (17) Å, β = 110.483 (4)°, V = 517.29 (15) Å3, Z = 1, Rgt(F) = 0.0225, wRref(F2) = 0.0649, T = 150 K.

CCDC no.: 2237245

The molecular structure, unique hydrogen bonds, a part of the title crystal structure and the energy framework are shown in the Figure. Tables 1 and 2 contain details on the crystal structure as well as measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.62 × 0.32 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.38 mm−1
Diffractometer, scan mode: Bruker APEX II, φ and ω
θmax, completeness: 36.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 23,772, 2531, 0.028
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2245
N(param)refined: 80
Programs: Bruker [1], SHELX [2, 3], Olex2 [4], CystalExplorer [5], Mercury [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
S1 0.71636 (2) 0.12650 (3) 0.48535 (2) 0.01256 (5)
O2 0.69367 (6) −0.13439 (9) 0.44676 (6) 0.01809 (10)
O3 0.72696 (6) 0.16513 (11) 0.62597 (5) 0.01927 (10)
O1 0.84081 (6) 0.23025 (11) 0.45613 (5) 0.01989 (11)
C1 0.56118 (8) 0.28516 (14) 0.38064 (7) 0.01894 (12)
H1A 0.473405 0.211923 0.390222 0.028*
H1B 0.555234 0.272640 0.285498 0.028*
H1C 0.568072 0.459692 0.407629 0.028*
N2 1.11484 (8) 0.13258 (11) 0.77002 (7) 0.01833 (11)
N1 1.10890 (7) 0.31492 (11) 0.66790 (6) 0.01603 (10)
H1D 1.0287 (14) 0.303 (2) 0.6074 (13) 0.024*
H1E 1.1756 (13) 0.293 (2) 0.6316 (12) 0.024*
H2A 1.1430 (13) −0.006 (2) 0.7415 (13) 0.024*
H2B 1.1887 (13) 0.171 (2) 0.8438 (13) 0.024*
H1F 1.1113 (13) 0.455 (2) 0.7015 (12) 0.024*

Source of materials

To a solution of 97 μL (2 mmol) 99% hydrazine hydrate in 3 mL 95% EtOH were added 2 mL (2 mmol) of 1 M methanesulfonic acid in 95% EtOH. The resulting solution was brought to 4 °C and left for a week in a tube loosely covered with a screwcap. Slow evaporation of the solvent resulted in formation of crystals as colourless plates.

Experimental details

The hydrazine H atoms were treated by a mixture of independent and constrained refinement while the methylene hydrogen atoms were initially placed in calculated positions. All N-bound hydrogen atom coordinates were allowed to refine freely, while thermal parameters were constrained to ride on the carrier atoms (Uiso(methyl H) = 1.5 Ueq).

Comment

Hydrazine is an important commodity and, for decades, it has been used in many industries [7], from production of blowing agents to rocketry, as a propellant, to agriculture, as a precursor of synthetic pesticides, to medicine, as a building block of therapeutic drugs. For example, hydrazide-hydrazone based drugs are clinically used for treatment tuberculosis [8] or intestinal infections [9]. Our lab has been evaluating chelators for inhibition of iron-dependent cytotoxic virulence factors from drug-resistant bacteria [10, 11] and, in the course of the study, has prepared a series of hydrazine derivatives and salts, including the title compound.

Hydrazinium mesylate crystallizes in the monoclinic P21/c space group, with one ion pair per asymmetric unit. The valence bond lengths and angles are in the expected ranges; geometries of the three S–O bonds in the mesylate anion are very similar: differences between the bond lengths are within 0.09 Å, the C–S–O valence angles are within the 0.7° range from the average 107°. The conventional hydrogen bonding in crystal structure of hydrazinium mesylate is extensive and multicentered, and includes the shortest heteroatom contact a (see the figure; N1⃛O2′ = 2.7793 (10) Å, H1E⃛O2′ = 1.941 (13) Å, N1–H1E⃛O2′ = 161.6 (10)°, ′ = 2 − x, −y, 1 − z), one bifurcated H-bond (N2⃛O1′ = 3.2183 (10) Å, H2A⃛O1′ = 2.451 (12) Å, N2–H2A⃛O1′ = 145.4 (11)° and N2⃛O3″ = 2.9618 (10) Å, H2A⃛O3″ = 2.337 (12) Å, N2–H2A⃛O3″ = 127.7 (11)°, ″ = 2 − x, −1/2 + y, 3/2 − z) and one trifurcated hydrogen bond (N1⃛O1‴ = 2.9007 (10) Å, H1F⃛O1‴ = 2.525 (12) Å, N1–H1F⃛O1‴ = 108.7 (10)°, ‴ = 2 − x, 1 − y, 1 − z; N1⃛O3″″ = 2.8960 (9) Å, H1F⃛O3′‴ = 2.247 (12) Å, N1–H1F⃛O3″″ = 135.1 (11)°, ″″ = 2 − x, 1/2 + y, 3/2 − z and N1⃛N2″″ = 3.0214 (11) Å, H1F⃛N2″″ = 2.518 (13) Å, N1–H1F⃛N2″″ = 120.1 (11)°) shown in the Figure. In addition, a short intermolecular contact, the C1–H1C⃛O2″‴, which satisfies to the distance and directionality conditions (C11⃛O2″‴ = 3.3706 (11) Å, H11⃛O2″‴ = 2.48 Å, C11–H11⃛O2″‴ = 152°, ″‴ = x, 1 + y, z), may contribute to the stability of the molecular packing in the HMAIH crystal, as well. To account for all interactions involved in the build-up of the crystal structure, we have performed DFT calculations, at the B3LYP/6–31G(d,p) theory level [5, 12], of the electrostatic, dispersion, polarization, and repulsion energies in the hydrazinium mesylate crystal structure. According to the calculations, the interactions between hydrogen-bonded pairs of ions located within the unit cell and shown in Figure provided the largest contribution to the lattice energy, with the electrostatic energy contributing the most for the attractive forces between neighbouring cation-anion pairs of hydrazinium mesylate (Eelstat = −69.7 kJ/mol, Epolarization = −1.5 kJ/mol, Edispersion = −12.4 kJ/mol). The spatial distribution of the energetically most significant interactions is illustrated in the Figure, showing the Coulomb energy framework as red cylinders penetrating the crystal lattice of hydrazinium mesylate. The cylinders connect centroids of the interacting molecules, and their diameters are proportional to Coulomb energies of the interactions, with the 13 kJ/mol cut-off, for clarity. The most extensive intermolecular interactions occur in the directions parallel to (102) (see the Figure).


Corresponding author: Valeri V. Mossine, Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: University of Missouri Agriculture Experiment Station Chemical Laboratories and by the USDA National Institute of Food and Agriculture (Hatch project 1023929).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Apex3 v. 2016.9–0 and SAINT v. 8.37A. Bruker Axs Inc.: Madison, Wisconsin, USA, 2016.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez–Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

7. Schmidt, E. W. Hydrazine and its Derivatives: Preparation, Properties, Applications, 2nd ed.; Wiley and Sons: New York, 2001; pp. 2232.Search in Google Scholar

8. Vilcheze, C., Jacobs, W. R. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol. 2007, 61, 35–50; https://doi.org/10.1146/annurev.micro.61.111606.122346.Search in Google Scholar PubMed

9. Thota, S., Rodrigues, D. A., Pinheiro, P. d. S. M., Lima, L. M., Fraga, C. A. M., Barreiro, E. J. N–Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806; https://doi.org/10.1016/j.bmcl.2018.07.015.Search in Google Scholar PubMed

10. Mossine, V. V., Waters, J. K., Chance, D. L., Mawhinney, T. P. Transient proteotoxicity of bacterial virulence factor pyocyanin in renal tubular epithelial cells induces ER-related vacuolation and can be efficiently modulated by iron chelators. Toxicol. Sci. 2016, 154, 403–415; https://doi.org/10.1093/toxsci/kfw174.Search in Google Scholar PubMed PubMed Central

11. Mossine, V. V., Kelley, S. P., Mawhinney, T. P. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 195–197; https://doi.org/10.1515/ncrs-2021-0435.Search in Google Scholar

12. Thomas, S. P., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theor. Comput. 2018, 14, 1614–1623; https://doi.org/10.1021/acs.jctc.7b01200.Search in Google Scholar PubMed

Received: 2023-01-10
Accepted: 2023-01-21
Published Online: 2023-01-30
Published in Print: 2023-04-25

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of methyl 2-((4-chloro-2-fluoro-6-((2,2,2-trifluoroethyl) thio)phenoxy)methyl)benzoate, C17H13ClF4O3S
  4. The crystal structure of 3-hydroxy-5-oxo-4-propanoylcyclohex-3-ene-1-carboxylic monohydrate, C10H14O6
  5. Crystal structure of 2-({[5-(adamantan-2-yl)-2-sulfanylidene-1,3,4-oxadiazolidin-3-yl]methyl}amino)benzonitrile, C20H22N4OS
  6. Crystal structure of 1-(3-bromopropyl)-2-((4-chlorophenoxy)methyl)-4-methyl-1H-benzo[d]imidazole, C18H18BrClN2O
  7. Crystal structure of 2-methoxy-6-[(2-morpholin-4-yl-phenylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone, C18H19N3O5
  8. The crystal structure of 2-(7-(2,3-dimethoxyphenyl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5-yl)-3-methoxyphenol, C20H18N4O4
  9. The crystal structure of 3-(1-(2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinyl)ethylidene)chroman-2,4-dione dihydrate, C20H22N2O8
  10. Crystal structure of 3,5,7-trimethoxy-3′,4′-methylenedioxy-flavone, C19H16O7
  11. The crystal structure of strictic acid, C20H26O3
  12. Crystal structure of 1,1′-(pyrazine-1,4-diyl)-bis(propan-2-one), C10H14N2O2
  13. The crystal structure of 1-(adamantan-1-yl)-3-(4-chlorophenyl)urea, C17H21ClN2O
  14. The crystal structure of (2R,6′R)-2′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-2′-ene-3,4′-dione, C16H14Cl2O5
  15. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-3-((4-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]-phenanthren-17-yl)ethan-1-one, C28H41NO2
  16. Crystal structure of N-2,6-difluorobenzoyl-N′-[1-(3-chloro-4-methyl-phenyl)-4-cyano-1H-pyrazol-5-carbamoyl]urea, C19H12ClF2N5O2
  17. Crystal structure of (−)-β-D-19-glucopiranosyl-9,15-dihydroxy kaurenoate, C26H40O9
  18. Crystal structure of 7-hydroxy-6-(2-hydroxyethyl)-2H-chromen-2-one, C11H10O4
  19. Crystal structure of S-(benzo[d]thiazol-2-yl)-N-(tert-butyl)thiohydroxylamine, C11H14N2S2
  20. Crystal structure of poly[di-µ2-aqua-aqua-nitrato-κ2O,O′-(µ3-2-nitroisophthalato-κ4O,O′:O″:O′″)barium(II)natrium(II)] monohydrate, C8H11BaN2NaO13
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2 N,O)-cobalt(II) dihydrate, C14H16N6O8Co
  22. Crystal structure of (S,E)-3-((pyridin-2-ylmethylene)amino)-2-(pyridin-4-yl)-2,3- dihydroquinazolin-4(1H)-one monohydrate, C19H15N5O⋅H2O
  23. Synthesis and crystal structure of 5-(8-(((5-carboxypentyl)ammonio)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxy-3-nitrobenzenesulfonate monohydrate, C22H24N2O12S
  24. Synthesis and crystal structure of 8-bromo-3-(1H-pyrazole-1-carbonyl)-2H-chromen-2-one, C13H7BrN2O3
  25. Crystal structure of E-7-fluoro-2-(4-methoxy-3-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  26. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-((3,5-dimethylphenyl)carbamoyl)-nicotinamide, C30H28Cl2N6O4
  27. Crystal structure of 3,3′-(1,4-phenylenebis(methylene))bis(1-allyl-1H-imidazol-3-ium) bis(hexafluoro phosphate)(V), C10H12F6N2P
  28. Crystal structure of (E)-7-bromo-2-(4-(4-methylpiperazin-1-yl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23BrN2O
  29. Crystal structure of pentacarbonyl-(μ2-ethane-1,2-dithiolato-κ4S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1P)diiron (Fe–Fe), C26H21Fe2O5PS2
  30. Crystal structure of 9-(2-chloroethoxy)-4-(4-methoxy-3-(trifluoromethyl)phenyl)- 5,6-dihydrobenzo[h]quinazolin-2-amine, C22H19ClF3N3O2
  31. Crystal structure of triaqua-[5-bromo-2-(carboxylatomethoxy)benzoate-κ3 O,O′,O″]nickel(II), C9H11BrNiO8
  32. The crystal structure of 4,4′-dichloro-3,5′-diphenyl-1′H-1,3′- bipyrazole, C18H12Cl2N4
  33. The crystal structure of bis(1H-pyrazole-carboxamidine-κN,N′)bis(nitrato-κO)-copper(II), C8H12CuN10O6
  34. Synthesis and crystal structure of 3-bromo-4-phenyl-2H-chromene, C15H11BrO
  35. Crystal structure of (E)-5-(diethylamino)-2-((morpholinoimino)methyl)phenol, C15H23N3O2
  36. Crystal structure of niobium trigallide, NbGa3
  37. Crystal structure of dimethyl 4,4′-(((1R, 2R)-cyclohexane-1,2-diyl)bis(azanediyl))dibenzoate, C22H26N2O4
  38. Crystal structure of dimethyl 4,4′-((4R, 5R)-4,5-diphenylimidazolidine-1,3-diyl)dibenzoate, C31H28N2O4
  39. The crystal structure of 2-(2-bromophenyl)-4-phenylbenzo[b][1,4]oxaphosphinine 4-oxide, C20H14BrO2P
  40. The crystal structure of 3-hydroxy-2-nitroestra-1,3,5(10)-trien-17-one, C18H21NO4
  41. Crystal structure of catena-poly[[μ2-1,3-bis[(1H-imidazol-1- yl)methyl]benzene-N:N′]-(μ2–D–camphorato-O, O′: O″, O‴)cadmium(II)], C48H56Cd2N8O8
  42. Crystal structure of N-(4-bromophenyl)-4-[3-(trifluoromethyl)phenyl]-piperazine-1-carbothioamide, C18H17BrF3N3S
  43. The crystal structure of cis-Dicyano-bis(2,2′-bipyridine)k2N,N′-chromium(III) hexafluorophosphate, C22H16N6F6PCr
  44. Crystal structure of 4-((6-bromohexyl)oxy)-2-hydroxybenzaldehyde, C13H17BrO3
  45. Crystal structure of hydrazinium methanesulfonate, CH8N2O3S
  46. Crystal structure of 1-(2-iodobenzoyl)-6-methoxy-1H-indole-3-carbaldehyde, C17H12INO3
  47. Crystal structure of bis(acridinium) tetrabromidomanganate(II), C26H20Br4MnN2
  48. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene)) bis(2-(tert-butyl)phenol), C22H28N2O2
  49. The crystal structure of the cocrystal di-μ2-chlorido-tetramethyl-tetraphenyl-di-μ3-oxido-dichloridotetratin(IV) – diphenyl-methyl-chloridotin(IV)(1/2), C54H58Cl6O2Sn6
  50. Crystal structure of (3a7R,13bR)-3-((1R)-1-hydroxy-1-(5-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-3a,11,11,13b-tetramethyl-2,3,3a,4,5,11,11a,12,13,13b-decahydroindeno[5′,4′:4,5] cyclohepta[1,2-c]oxepin-9(1H)-one, C30H40O5
  51. Crystal structure of 1-(4-methoxyphenyl)-2-phenoxyethan-1-one, C15H14O3
  52. Crystal structure of trans-tetrakis(3-phenylpyridine-κN)bis(thiocyanato-κN)nickel(II), C46H36N6NiS2
  53. Crystal structure of sodium catena-poly[bis(thiourea-κ1S)-tetrakis(μ2-thiourea-κ2S,S)tricopper(I)] difumarate, C14H29Cu3N12NaO8S6
  54. Crystal structure of bis(benzylamine-κ1N)-bis((E)-2-methyl-3-phenylacrylato-κ1O)copper(II), C34H36CuN2O4
  55. The crystal structure of 3,4-dihydroxybenzoic acid – 3-[7-{[2-(3,4-difluorophenyl)cyclopropyl]amino}-5-(propylsulfanyl)-3H-[1,2,3] triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2-diol – water (1/1/1), C30H36F2N6O9S
  56. Crystal structure of catena-poly[dipyridine-bis(pyridine-2-carboxylato-κ 2 N,O)-bis(μ 2-pyridine-2-carboxylato-κ 2 N,O)-dinickel(II)], C34H26N6Ni2O8
  57. The crystal structure of 1-((1-methyl-1H-1,2,4-triazol-3-yl) methyl)-3-(2,4,5-trifluorobenzyl)-1,3,5-triazinane-2,4,6-trione, C14H11F3N6O3
  58. Crystal structure of (E)-2-((Z)-2-((1S,4R)-3,3-dimethylbicyclo[2.2.1] heptan-2-ylidene)ethylidene)hydrazine-1-carbothioamide, C24H38N6S2
  59. Crystal structure of photochromic 3-(5-(2,5-dimethylthiophen-3-yl)-2,2,3,3,4,4-hexafluorocyclopentyl)-2-methylbenzo[b]-thiophene, C20H14F6S2
  60. Crystal structure of bis(2,5,5,7-tetramethyl-1,4-diazepane-1,4-diium) diaqua-bis(1,2-diaminopropane)copper(II) bis(μ6-oxido)tetrakis(μ3-oxido)-tetradecakis(μ2-oxido)-octaoxido-decavanadium(V) – water (1/4), C24H76CuN8V10O34
  61. Crystal structure of 1,2,3,5,13-pentamethoxy-6,7-dimethyl-1,2,3,4,4a,5,6,7,8,13b-decahydrobenzo[3′,4′]cycloocta[1′,2′:4,5]benzo[1,2-d][1,3]dioxole, C24H30O7
  62. Crystal structure of bis(6-carboxyhexyl)-4,4′-bipyridinium dibromide – 2,6-dihydroxynaphthalene (1/2), C42H46Br2N2O8
  63. Crystal structure of methyl 2-(2-chloroacetyl)-1-(4-(methoxycarbonyl)phenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H21ClN2O5
  64. Crystal structure of bis(dimethylammonium) poly[{μ4-1,1ʹ-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato)-κ6N4O2}zinc(II)], C22H26N6O8Zn
  65. Crystal structure of 2-(2-(4-methoxyphenyl)-2H-indazol-3-yl)acetonitrile, C16H13N3O
  66. Crystal structure of (E)-7-methoxy-2-(4-morpholinobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H23NO3
  67. The crystal structure of N′1,N′2-bis((E)-3-(tert-butyl)-2-hydroxybenzylidene)oxalohydrazide, C24H30N4O4
  68. The crystal structure of trimethyl 2,2′,2′′-(benzene-1,3,5-triyltris(oxy))triacetate, C15H18O9
  69. Crystal structure of bis(N,N-dimethylformamide-κO)-bis(pyridine-2-carboxylato-κ2N,O)-bis(μ2-pyridine-2-carboxylato-κ2N,O)-dinickel(II), C30H30N6Ni2O10
  70. Crystal structure of bis(μ2-1-pyrenecarboxylato-κ3O,O′:O′)-bis(1-pyrenecarboxylato-κ2O,O′)-(benzimidazole-κ1N)dicadmium(II), C82H48Cd2N4O8
  71. One-pot synthesis and crystal structure of diethyl 2,6-dimethyl-4-(1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate, C21H23N5O6
  72. The crystal structure of 1-(2-fluorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-carbonitrile, C18H13FN2O2
  73. Crystal structure of bis(trimethylphenylammonium) aqua-oxido-octathiotritungstate, (Me3PhN)2[W3OS8(H2O)]
  74. The crystal structure of trichlorido[N-[(2-oxyphenyl)methylidene]phenylglycinemethylester-κ3O,N,O′]-tin(IV) – methylene chloride (1/1), C16H14Cl3NO3Sn·CH2Cl2
  75. The crystal structure of furan-2,5-diylbis((4-chlorophenyl)methanol), C18H14Cl2O3
  76. The crystal structure of hexalithium decavanadate hexadecahydrate, H32Li6O44V10
  77. Crystal structure of ethyl 4-{[5-(adamantan-1-yl)-2-sulfanylidene-2,3-dihydro-1,3,4-oxadiazol-3-yl]methyl}piperazine-1-carboxylate, C20H30N4O3S
  78. Crystal structure of aqua(μ2-2,2′,2″-((nitrilo)tris(ethane-2,1-diyl(nitrilo)methylylidene))tris (6-ethoxyphenolato))(pentane-2,4-dionato-κ2O,O′)-dinickel(II), C38H48N4Ni2O9
Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0022/html
Scroll to top button