Home Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
Article Open Access

Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S

  • Lamya H. Al-Wahaibi , Mohammed S. M. Abdelbaky , Santiago Garcia-Granda , Edward R. T. Tiekink and Ali A. El-Emam ORCID logo EMAIL logo
Published/Copyright: September 7, 2022

Abstract

C20H24N4O2S, monoclinic, C2/c (no. 15), a = 28.5901(10) Å, b = 6.4383(4) Å, c = 20.060(1) Å, β = 99.682(4)°, V = 3639.9(3) Å3, Z = 8, R gt (F) = 0.0557, wR ref (F 2) = 0.1514, T = 150 K.

CCDC no.: 2203657

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless prism
Size: 0.18 × 0.08 × 0.06 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 1.78 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 75.8°, >99%
N (hkl) measured , N(hkl) uniqueR int: 16,466, 3726, 0.094
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 2330
N(param)refined: 245
Programs: CrysAlisPRO [1], SHELX [2, 3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso∗/U eq
S1 0.42766 (3) 0.30733 (16) 0.68614 (4) 0.0418 (3)
O1 0.53920 (9) 0.7788 (5) 0.98621 (14) 0.0587 (8)
O2 0.52822 (10) 1.0658 (5) 0.93034 (14) 0.0590 (8)
N1 0.33771 (10) −0.0530 (5) 0.57618 (13) 0.0421 (7)
N2 0.36515 (11) 0.0031 (5) 0.63718 (14) 0.0465 (8)
N3 0.37213 (8) 0.2435 (4) 0.56105 (13) 0.0336 (6)
N4 0.52057 (9) 0.8800 (5) 0.93738 (15) 0.0422 (7)
C1 0.34254 (10) 0.0918 (5) 0.53107 (15) 0.0315 (7)
C2 0.38512 (10) 0.1800 (6) 0.62679 (15) 0.0360 (8)
C3 0.32083 (10) 0.0738 (5) 0.45725 (14) 0.0271 (6)
C4 0.29333 (10) 0.2690 (5) 0.42840 (15) 0.0293 (7)
H4A 0.268038 0.300134 0.455099 0.035∗
H4B 0.315172 0.389336 0.432052 0.035∗
C5 0.27119 (10) 0.2354 (5) 0.35415 (15) 0.0314 (7)
H5 0.253704 0.363681 0.336292 0.038∗
C6 0.31046 (10) 0.1901 (5) 0.31286 (15) 0.0323 (7)
H6A 0.332693 0.309005 0.316063 0.039∗
H6B 0.296430 0.170365 0.264695 0.039∗
C7 0.33727 (10) −0.0068 (5) 0.34022 (15) 0.0310 (7)
H7 0.362769 −0.036683 0.313019 0.037∗
C8 0.35982 (10) 0.0247 (5) 0.41457 (15) 0.0319 (7)
H8A 0.382847 0.140705 0.418213 0.038∗
H8B 0.377117 −0.102573 0.431997 0.038∗
C9 0.30278 (10) −0.1896 (5) 0.33431 (15) 0.0335 (7)
H9A 0.319950 −0.317638 0.351308 0.040∗
H9B 0.288646 −0.211691 0.286306 0.040∗
C10 0.28578 (10) −0.1110 (5) 0.44985 (15) 0.0319 (7)
H10A 0.302774 −0.238652 0.467633 0.038∗
H10B 0.260439 −0.083809 0.476812 0.038∗
C11 0.26358 (10) −0.1440 (5) 0.37571 (15) 0.0322 (7)
H11 0.241077 −0.263907 0.372130 0.039∗
C12 0.23666 (10) 0.0526 (5) 0.34851 (16) 0.0338 (7)
H12A 0.221975 0.031871 0.300654 0.041∗
H12B 0.211094 0.082046 0.374889 0.041∗
C13 0.38872 (12) 0.4329 (6) 0.53311 (18) 0.0436 (9)
H13A 0.418684 0.476551 0.560731 0.065∗
H13B 0.364956 0.542582 0.533101 0.065∗
H13C 0.393692 0.407107 0.486661 0.065∗
C14 0.39039 (10) 0.4716 (6) 0.73011 (17) 0.0387 (8)
H14A 0.372873 0.574265 0.698623 0.046∗
H14B 0.367201 0.386281 0.749522 0.046∗
C15 0.42390 (10) 0.5799 (6) 0.78545 (16) 0.0347 (7)
C16 0.44075 (11) 0.4790 (6) 0.84613 (16) 0.0364 (8)
H16 0.430261 0.342067 0.853324 0.044∗
C17 0.47270 (10) 0.5762 (6) 0.89623 (16) 0.0380 (8)
H17 0.484404 0.507332 0.937555 0.046∗
C18 0.48700 (10) 0.7756 (5) 0.88441 (16) 0.0330 (7)
C19 0.47070 (11) 0.8812 (6) 0.82517 (17) 0.0378 (8)
H19 0.480956 1.018943 0.818596 0.045∗
C20 0.43898 (10) 0.7814 (6) 0.77548 (17) 0.0389 (8)
H20 0.427447 0.851266 0.734265 0.047∗

Source of material

To a solution of 5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazole-3-thiol [5] (1.25 g, 5.0 mmol) in DMF (10 mL), 4-nitrobenzyl chloride (1.08 g, 5.0 mmol) and anhydrous potassium carbonate (0.69 g, 5 mmol) were added; the mixture was then stirred at room temperature for 8 h. After this, ice-cold water (10 mL) was added to the reaction mixture with continuous stirring for 1 h. The precipitated crude product was filtered, washed with cold water, dried and crystallised from aqueous ethanol to yield 1.71 g (89%) of the title compound as colourless prisms. M. pt: 443–445 K (uncorrected). Anal. Calcd. for C20H24N4O2S: C, 62.48; H, 6.29; N, 14.57; S, 8.34%. Found: C, 62.44; H, 6.31; N, 14.53; S, 8.32%. 1H NMR (CDCl3, 700.17 MHz): δ 1.78 (s, 6H, adamantane-H), 1.98–2.02 (m, 9H, adamantane-H), 3.32 (s, 3H, CH3), 4.35 (s, 2H, benzylic CH2), 7.36 (d, 2H, Ar–H, J = 8.5 Hz), 8.01 (d, 2H, Ar–H, J = 8.5 Hz). 13C NMR (CDCl3, 176.08 MHz): δ 33.25 (CH3), 28.0, 35.14, 37.16, 40.60 (adamantane-C), 36.30 (benzylic-CH2), 122.84, 130.30, 142.53, 146.02 (Ar–C), 149.64, 161.26 (triazole-C). Single crystals for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol:chloroform (2:1, v/v) held at room temperature.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with U iso (H) = 1.2–1.5 U eq (C).

Comment

Considerable attention has been devoted to adamantane-based derivatives owing to their diverse chemotherapeutic activities [6], [7], [8]. For example, several adamantane-linked 1,2,4-triazole derivatives have been identified as efficient therapies for the treatment of type 2 diabetes and obesity through the inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) [9, 10]. In an extension of on-going interest in the structural studies and potential biological applications of adamantane-linked 1,2,4-triazoles [11, 12], herein the crystal and molecular structures of the title compound, a potential 11β-HSD1 inhibitor [5], are described.

The molecular structure of (I) is shown in the figure (50% probability ellipsoids). The central 1,2,4-triazolyl ring is planar with a r.m.s. deviation for the five atoms being 0.004 Å with maximum deviations of ±0.003 Å noted for the N1 and C1 atoms. The C1–N1 and C2–N2 bond lengths of 1.323 (4) and 1.306 (4) Å, respectively, are experimentally equivalent, and systematically shorter than the C1–N3 and C2–N3 bond lengths of 1.364(4) and 1.371(4) Å, respectively, which are also experimentally the same. In connection with the last mentioned bonds, which are shorter than their standard single bond values, the decrease in the N1–N2 bond length [1.386(4) Å] is suggestive of substantial delocalisation of π-electron density in the five-membered ring. The adamantan-1-yl group is appended at the C1-position with the S-bound [(4-nitrophenyl)methyl]sulfanyl substituent connected at the C2-position. A significant kink is apparent in the molecule, at the S–CH2– link, as seen in the C2–S1–C14 [101.77(14)°] and C15–C14–S1 [105.8(2)°] bond angles although the four atoms are co-planar: the C2–S1–C14–C15 torsion angle = 176.9(2)°. As expected, the C2–S1 bond length of 1.756(3) Å, i.e. involving the ring-carbon atom, is shorter than the C14–S1 bond of 1.830(3) Å, involving the methylene-carbon atom. Despite the kink in the molecule, the aromatic residues are close to parallel with the dihedral angle between them being 11.21(17)°. Finally, the nitro group is twisted out of the plane of the phenyl ring it is connected to, as reflected in the O1–N4–C18–C17 torsion angle of 9.1(4)°.

The most closely related structure in the crystallographic literature available for comparison is the derivative with a nitrogen-bound phenyl group instead of a nitrogen-bound methyl group [12]. Here, the crucial central Cring–S–Cmethylene–Cphenyl torsion angle is 84.3 (3)° resulting in an orthogonal relationship between the triazolyl and phenyl rings. Similar conformations were noted in the 4-fluorophenyl (83.1(3)°) and 4-chlorophenyl (79.06(13)°) analogues. Presumably this change of conformation in these three molecules arises as a result of the steric congestion due to the nitrogen-bound phenyl rings [12]. However, other influences come into play as in the two other nitrogen-bound methyl derivatives, quite distinct conformations are apparent. Thus, in the 4-chloro species, a very similar conformation is noted as for the title compound (torsion angle = 179.32 (14)°) [11]. In the parent compound with an unsubstituted phenyl ring [13], the torsion angle of 163.3(2)° resembles that in the title compound, yet a more open conformation was noted as manifested in the dihedral angle of 51.42(8)° between the rings; the second independent molecule comprising the asymmetric-unit suffered from positional disorder but presented an analogous conformation.

In the absence of conventional hydrogen bonding, C–H⃛O, C–H⃛N and nitro-O⃛π interactions come to the fore in the molecular packing of (I). Thus, methyl-C–H⃛O (nitro) [C13–H13a⃛O1i: H13a⃛O1i = 2.55 Å, C13a⃛O1i = 3.103(5) Å with angle at H13a = 116° for symmetry operation (i): 1 − x, y, 3/2 − z], phenyl-C–H⃛O (nitro) C17–H17⃛O1ii: H17⃛O1ii = 2.56 Å, C17⃛O1ii = 3.342(5) Å with angle at H17 = 140° for (ii): 1 − x, 1 − y, 2 − z] and phenyl-C–H⃛N (triazolyl) C20–H20⃛N2iii: H20⃛N2iii = 2.60 Å, C20⃛N2iii = 3.496(4) Å with angle at H20 = 158° for (iii): x, 1 + y, z] interactions occur at separations within the respective sum of the van der Waals radii [14]. The prominent role of the nitro-O atoms in the molecular packing is emphasised by the presence of a nitro-O⃛π(triazolyl) interaction [N4–O2⃛Cg (N1–N3, C1, C2)iv: O2⃛Cg (N1–N3, C1, C2)iv = 3.259(3) Å with angle at O2 = 105.1(2)° for (iv): 1 − x, 1 + y, 3/2 − z]. The nitro-O atom approaches the triazole ring in a side-on fashion with the closest O2⃛C2 contact being short at 2.991(4) Å. The aforementioned contacts occur within layers that stack along the a-axis with the adamantan-1-yl residues projecting to either side. There are no directional interactions between layers.

A recent study on organotin compounds of adamantanyl-substituted carboxylates indicated very high contributions to the calculated Hirshfeld surfaces by H⃛H contacts owing to the relatively large volume occupied by these substituents [15]. Thus, analogous calculations were conducted for the title compound employing standard methods [16] and Crystal Explorer 17.5 [17]. The present analysis indeed showed H⃛H surface contacts contributed 50.9% to all contacts, despite the identified interactions giving rise to the described supramolecular layer. The next major contributions were due to N⃛H/H⃛N [13.6%], O⃛H/H⃛O [12.0%] and C⃛H/H⃛C [10.4%] contacts. After these, the only significant contacts to the Hirshfeld surface were from S⃛H/H⃛S [4.1%], O⃛N/N⃛O [2.2%], then O⃛C/C⃛O and S⃛C/C⃛S contacts, each contributing 1.7%.


Corresponding author: Ali A. El-Emam, Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt, E-mail:

Funding source: Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Award Identifier / Grant number: PNURSP2022R3

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project No. PNURSP2022R3, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlispro; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. El-Emam, A. A., Ibrahim, T. M. Synthesis and anti-inflammatory and analgesic activity of some 3-(1-adamantyl)-4-substituted-5-mercapto-1,2,4-triazoles. Arzneim. Forsch. 1991, 41, 1260–1264.Search in Google Scholar

6. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., Kuca, K. Adamantane – a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016, 23, 3245–3266; https://doi.org/10.2174/0929867323666160525114026.Search in Google Scholar PubMed

7. Wanka, L., Iqbal, K., Schreiner, P. R. The lipophilic bullet hits the targets: Medicinal chemistry of adamantane derivatives. Chem. Rev. 2013, 113, 3516–3604; https://doi.org/10.1021/cr100264t.Search in Google Scholar PubMed PubMed Central

8. Liu, J., Obando, D., Liao, V., Lifa, T., Codd, R. The many faces of the adamantyl group in drug design. Eur. J. Med. Chem. 2011, 46, 1949–1963; https://doi.org/10.1016/j.ejmech.2011.01.047.Search in Google Scholar PubMed

9. Olson, S., Aster, S. D., Brown, K., Carbin, L., Graham, D. W., Hermanowski-Vosatka, A., LeGrand, C. B., Mundt, S. S., Robbins, M. A., Schaeffer, J. M., Slossberg, L. H., Szymonifka, M. J., Thieringer, R., Wright, S. D., Balkovec, J. M. Adamantyl triazoles as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Bioorg. Med. Chem. Lett. 2005, 15, 4359–4362; https://doi.org/10.1016/j.bmcl.2005.06.040.Search in Google Scholar PubMed

10. Joharapurkar, A., Dhanesha, N., Shah, G., Kharul, R., Jain, M. 11β-Hydroxysteroid dehydrogenase type 1: potential therapeutic target for metabolic syndrome. Pharmacol. Rep. 2012, 64, 1055–1065; https://doi.org/10.1016/s1734-1140(12)70903-9.Search in Google Scholar PubMed

11. Al-Wahaibi, L. H., Joubert, J., Blacque, O., Al-Shaalan, N. H., El-Emam, A. A. Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole, a potential 11β-HSD1 inhibitor. Sci. Rep. 2019, 9, 19745; https://doi.org/10.1038/s41598-019-56331-z.Search in Google Scholar PubMed PubMed Central

12. Osman, D. A., Macías, M. A., Al-Wahaibi, L. H., Al-Shaalan, N. H., Zondagh, L. S., Joubert, J., Garcia-Granda, S., El-Emam, A. A. Structural insights and docking analysis of adamantane-linked 1,2,4-triazole derivatives as potential 11β-HSD1 inhibitors. Molecules 2021, 26, 5335; https://doi.org/10.3390/molecules26175335.Search in Google Scholar PubMed PubMed Central

13. Al-Abdullah, E. S., El-Emam, A. A., Ghabbour, H. A., Chantrapromma, S., Fun, H.-K. 5-(Adamantan-1-yl)-3-(benzylsulfanyl)-4-methyl-4H-1,2,4-triazole. Acta Crystallogr. 2012, E68, o2427–o2428; https://doi.org/10.1107/s1600536812030784.Search in Google Scholar

14. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

15. Basu Baul, T. S., Manne, R., Duthie, A., Liew, L. Y., Chew, J., Lee, S. M., Tiekink, E. R. T. Synthesis, structural and in vitro biological evaluation of diamondoid-decorated lipophilic organotin(IV) derivatives. J. Organomet. Chem. 2021, 941, 121802; https://doi.org/10.1016/j.jorganchem.2021.121802.Search in Google Scholar

16. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

17. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

Received: 2022-07-14
Accepted: 2022-07-19
Published Online: 2022-09-07
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0392/html?srsltid=AfmBOoob3Kl_CEbBEoFNsKVcTW4ES75o4wr8KGFXOZmJApwVGJ8qhfeo
Scroll to top button