Home Physical Sciences The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
Article Open Access

The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru

  • Nqobile G. Ndlangamandla and Hadley S. Clayton ORCID logo EMAIL logo
Published/Copyright: October 24, 2022

Abstract

C38H38Cl2N2P2Ru, monoclinic, P21/c (no. 14), a = 10.8827(3) Å, b = 30.6226(7) Å, c = 20.2089(4) Å, β = 93.8560(10)°, V = 6719.5(3) Å3, Z = 8, Rgt (F) = 0.0306, wRref (F 2) = 0.0636, T = 173(2) K.

CCDC no.: 2183295

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow plate
Size: 0.52 × 0.37 × 0.02 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.75 mm−1
Diffractometer, scan mode: Bruker D8 Venture Photon, ω
θ max, completeness: 28.0°, >99%
N(hkl)measuredN(hkl)uniqueR int: 139,125, 16,216, 0.035
Criterion for I obs, N(hkl)gt: I obs°>°2σ(I obs), 14,939
N(param)refined: 843
Programs: Bruker [1], Shelx [2], WinGX [3], Platon [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 −0.0124 (2) 0.28312 (7) 0.54311 (11) 0.0244 (4)
H1A 0.0205 0.313013 0.538305 0.029*
H1B −0.09667 0.285259 0.558493 0.029*
C2 −0.0144 (2) 0.25925 (7) 0.47801 (11) 0.0239 (4)
H2A −0.073009 0.273449 0.445143 0.029*
H2B 0.068474 0.259721 0.46059 0.029*
C3 0.28840 (18) 0.16301 (6) 0.70461 (10) 0.0176 (4)
C4 0.37167 (19) 0.17315 (7) 0.65730 (10) 0.0205 (4)
H4 0.342785 0.18632 0.616629 0.025*
C5 0.4963 (2) 0.16418 (7) 0.66907 (12) 0.0274 (5)
H5 0.551315 0.169652 0.635487 0.033*
C6 0.5405 (2) 0.14731 (7) 0.72952 (13) 0.0309 (5)
H6 0.626005 0.141807 0.737854 0.037*
C7 0.4598 (2) 0.13846 (7) 0.77779 (12) 0.0294 (5)
H7 0.490275 0.127606 0.819771 0.035*
C8 0.3343 (2) 0.14539 (7) 0.76512 (11) 0.0229 (4)
H8 0.2791 0.138089 0.79789 0.027*
C9 0.11743 (18) 0.22668 (6) 0.74343 (10) 0.0173 (4)
C10 0.21399 (19) 0.23821 (7) 0.78965 (10) 0.0193 (4)
H10 0.28799 0.221665 0.791674 0.023*
C11 0.2037 (2) 0.27331 (7) 0.83252 (10) 0.0227 (4)
H11 0.269648 0.280163 0.864006 0.027*
C12 0.0970 (2) 0.29838 (7) 0.82938 (10) 0.0238 (4)
H12 0.090095 0.322572 0.858327 0.029*
C13 0.0011 (2) 0.28789 (7) 0.78387 (11) 0.0242 (4)
H13 −0.071861 0.305005 0.781421 0.029*
C14 0.0110 (2) 0.25229 (7) 0.74151 (11) 0.0220 (4)
H14 −0.056023 0.245306 0.710746 0.026*
C15 0.04788 (19) 0.13770 (7) 0.73980 (9) 0.0183 (4)
C16 −0.0537 (2) 0.14923 (7) 0.77506 (10) 0.0234 (4)
H16 −0.077866 0.178977 0.777181 0.028*
C17 −0.1196 (2) 0.11756 (8) 0.80701 (11) 0.0290 (5)
H17 −0.187981 0.125803 0.83104 0.035*
C18 −0.0859 (2) 0.07421 (8) 0.80393 (12) 0.0338 (5)
H18 −0.132754 0.052561 0.824622 0.041*
C19 0.0163 (2) 0.06222 (8) 0.77063 (11) 0.0303 (5)
H19 0.040571 0.032457 0.769361 0.036*
C20 0.0831 (2) 0.09385 (7) 0.73910 (10) 0.0233 (4)
H20 0.153504 0.085517 0.716793 0.028*
C21 −0.13460 (18) 0.08326 (6) 0.57535 (10) 0.0167 (4)
C22 −0.18810 (19) 0.08935 (7) 0.63535 (10) 0.0221 (4)
H22 −0.1612 0.112686 0.663716 0.026*
C23 −0.2808 (2) 0.06147 (8) 0.65411 (12) 0.0293 (5)
H23 −0.315885 0.065741 0.695406 0.035*
C24 −0.3220 (2) 0.02765 (8) 0.61312 (12) 0.0301 (5)
H24 −0.384723 0.008604 0.626386 0.036*
C25 −0.2717 (2) 0.02160 (8) 0.55265 (12) 0.0282 (5)
H25 −0.300689 −0.001283 0.523949 0.034*
C26 −0.1787 (2) 0.04910 (7) 0.53421 (11) 0.0234 (4)
H26 −0.144229 0.044689 0.492782 0.028*
C27 −0.01424 (18) 0.10713 (6) 0.46422 (9) 0.0165 (4)
C28 −0.1190 (2) 0.12468 (7) 0.43008 (10) 0.0213 (4)
H28 −0.177133 0.140392 0.453836 0.026*
C29 −0.1391 (2) 0.11948 (7) 0.36237 (11) 0.0270 (5)
H29 −0.21 0.132068 0.339908 0.032*
C30 −0.0569 (2) 0.09611 (8) 0.32703 (11) 0.0306 (5)
H30 −0.071241 0.092527 0.280454 0.037*
C31 0.0463 (2) 0.07796 (8) 0.35993 (11) 0.0295 (5)
H31 0.102612 0.061585 0.335914 0.035*
C32 0.0682 (2) 0.08358 (7) 0.42829 (10) 0.0224 (4)
H32 0.139735 0.071248 0.450434 0.027*
C33 0.12525 (18) 0.07575 (6) 0.58006 (9) 0.0163 (4)
C34 0.1019 (2) 0.03399 (7) 0.60410 (11) 0.0222 (4)
H34 0.019418 0.023941 0.604977 0.027*
C35 0.1987 (2) 0.00706 (7) 0.62674 (12) 0.0276 (5)
H35 0.181956 −0.021219 0.643255 0.033*
C36 0.3190 (2) 0.02118 (7) 0.62536 (12) 0.0277 (5)
H36 0.384725 0.002853 0.641523 0.033*
C37 0.3435 (2) 0.06210 (7) 0.60036 (12) 0.0268 (5)
H37 0.426242 0.071594 0.598376 0.032*
C38 0.24738 (19) 0.08926 (7) 0.57820 (10) 0.0205 (4)
H38 0.264951 0.117424 0.561532 0.025*
N1 −0.05294 (17) 0.21356 (6) 0.48960 (9) 0.0194 (3)
N2 0.06769 (17) 0.25783 (6) 0.59095 (9) 0.0194 (3)
P1 0.12456 (5) 0.17786 (2) 0.68852 (2) 0.01457 (9)
P2 0.00209 (4) 0.11506 (2) 0.55466 (2) 0.01381 (9)
Cl1 0.21032 (4) 0.19031 (2) 0.51273 (2) 0.01898 (9)
Cl2 −0.16861 (4) 0.19859 (2) 0.62038 (2) 0.02013 (10)
Ru1 0.03478 (2) 0.18852 (2) 0.58171 (2) 0.01280 (4)
H1C −0.037 (2) 0.1977 (8) 0.4553 (13) 0.020 (6)*
H1D −0.131 (2) 0.2126 (8) 0.4940 (11) 0.017 (6)*
H2C 0.059 (3) 0.2680 (9) 0.6300 (14) 0.034 (7)*
H2D 0.143 (2) 0.2620 (8) 0.5829 (12) 0.022 (6)*
C39 0.5441 (2) 0.26225 (7) 0.76100 (11) 0.0234 (4)
H39A 0.474037 0.244633 0.742064 0.028*
H39B 0.564483 0.252535 0.807166 0.028*
C40 0.6535 (2) 0.25684 (7) 0.72036 (11) 0.0237 (4)
H40A 0.724101 0.274013 0.739768 0.028*
H40B 0.678044 0.225744 0.718941 0.028*
C41 0.55621 (19) 0.29347 (7) 0.50086 (10) 0.0208 (4)
C42 0.4902 (2) 0.25525 (7) 0.51131 (11) 0.0245 (4)
H42 0.42575 0.255726 0.540746 0.029*
C43 0.5173 (2) 0.21640 (8) 0.47931 (12) 0.0292 (5)
H43 0.471133 0.190796 0.487141 0.035*
C44 0.6101 (2) 0.21489 (8) 0.43658 (11) 0.0284 (5)
H44 0.629491 0.188281 0.415472 0.034*
C45 0.6750 (2) 0.25257 (9) 0.42465 (11) 0.0305 (5)
H45 0.738261 0.251859 0.39447 0.037*
C46 0.6488 (2) 0.29175 (8) 0.45646 (11) 0.0263 (5)
H46 0.694426 0.317337 0.44776 0.032*
C47 0.36822 (19) 0.35909 (7) 0.50314 (10) 0.0198 (4)
C48 0.3038 (2) 0.33294 (8) 0.45615 (11) 0.0260 (5)
H48 0.336792 0.305483 0.444538 0.031*
C49 0.1919 (2) 0.34664 (9) 0.42619 (11) 0.0304 (5)
H49 0.147982 0.328182 0.395082 0.036*
C50 0.1439 (2) 0.38689 (9) 0.44126 (12) 0.0339 (6)
H50 0.068028 0.39633 0.419991 0.041*
C51 0.2068 (2) 0.41344 (9) 0.48745 (12) 0.0339 (6)
H51 0.174312 0.441206 0.497916 0.041*
C52 0.3180 (2) 0.39933 (8) 0.51860 (11) 0.0260 (5)
H52 0.360112 0.417446 0.550847 0.031*
C53 0.62280 (19) 0.38282 (7) 0.50932 (10) 0.0206 (4)
C54 0.5857 (2) 0.41411 (8) 0.46256 (11) 0.0297 (5)
H54 0.502098 0.415205 0.445824 0.036*
C55 0.6697 (3) 0.44389 (10) 0.43991 (14) 0.0448 (7)
H55 0.642787 0.465701 0.408788 0.054*
C56 0.7921 (3) 0.44186 (11) 0.46252 (13) 0.0455 (7)
H56 0.849141 0.462496 0.447493 0.055*
C57 0.8314 (2) 0.40984 (10) 0.50694 (12) 0.0364 (6)
H57 0.916262 0.407628 0.520932 0.044*
C58 0.7475 (2) 0.38076 (8) 0.53135 (11) 0.0265 (5)
H58 0.77483 0.359405 0.563115 0.032*
C59 0.49722 (18) 0.45120 (6) 0.67967 (10) 0.0179 (4)
C60 0.5850 (2) 0.45537 (7) 0.63336 (11) 0.0238 (4)
H60 0.603358 0.431056 0.606538 0.029*
C61 0.6466 (2) 0.49475 (8) 0.62567 (13) 0.0326 (5)
H61 0.70574 0.497234 0.593384 0.039*
C62 0.6218 (2) 0.53007 (8) 0.66480 (13) 0.0321 (5)
H62 0.664659 0.556801 0.660061 0.038*
C63 0.5337 (2) 0.52641 (7) 0.71134 (12) 0.0296 (5)
H63 0.51605 0.550737 0.738284 0.035*
C64 0.4720 (2) 0.48761 (7) 0.71839 (10) 0.0233 (4)
H64 0.411504 0.485513 0.749997 0.028*
C65 0.43584 (18) 0.39910 (6) 0.78562 (9) 0.0168 (4)
C66 0.54700 (19) 0.41198 (7) 0.81881 (10) 0.0199 (4)
H66 0.613594 0.421026 0.793986 0.024*
C67 0.5610 (2) 0.41166 (7) 0.88779 (11) 0.0248 (4)
H67 0.636071 0.421391 0.909674 0.03*
C68 0.4665 (2) 0.39730 (8) 0.92459 (11) 0.0276 (5)
H68 0.476442 0.397127 0.971659 0.033*
C69 0.3575 (2) 0.38318 (8) 0.89262 (11) 0.0269 (5)
H69 0.293231 0.372432 0.917711 0.032*
C70 0.3416 (2) 0.38467 (7) 0.82352 (10) 0.0217 (4)
H70 0.265423 0.375715 0.802057 0.026*
C71 0.25885 (18) 0.40915 (7) 0.67548 (10) 0.0181 (4)
C72 0.2120 (2) 0.44993 (7) 0.65632 (11) 0.0245 (4)
H72 0.266866 0.47359 0.650842 0.029*
C73 0.0856 (2) 0.45637 (8) 0.64513 (12) 0.0285 (5)
H73 0.05514 0.484353 0.631994 0.034*
C74 0.0042 (2) 0.42253 (8) 0.65292 (11) 0.0269 (5)
H74 −0.081954 0.427227 0.646026 0.032*
C75 0.0492 (2) 0.38177 (8) 0.67082 (11) 0.0250 (4)
H75 −0.006281 0.358185 0.675407 0.03*
C76 0.17499 (19) 0.37502 (7) 0.68217 (11) 0.0224 (4)
H76 0.204617 0.346821 0.694653 0.027*
N3 0.51191 (19) 0.30924 (6) 0.75966 (9) 0.0208 (4)
N4 0.61608 (18) 0.27282 (6) 0.65257 (9) 0.0207 (4)
P3 0.51692 (5) 0.34401 (2) 0.54589 (2) 0.01628 (10)
P4 0.42488 (4) 0.39787 (2) 0.69344 (2) 0.01463 (9)
Cl3 0.33416 (4) 0.29107 (2) 0.64009 (2) 0.02071 (10)
Cl4 0.71837 (4) 0.36305 (2) 0.69438 (2) 0.02141 (10)
Ru2 0.51755 (2) 0.33391 (2) 0.65935 (2) 0.01352 (4)
H3A 0.569 (3) 0.3237 (9) 0.7840 (14) 0.036 (8)*
H3B 0.440 (3) 0.3125 (9) 0.7733 (13) 0.028 (7)*
H4A 0.566 (3) 0.2530 (10) 0.6326 (14) 0.039 (8)*
H4B 0.682 (3) 0.2743 (8) 0.6295 (13) 0.028 (7)*

Source of materials

All reagents are commercially available and were used without further purification. The reaction was carried out under an argon atmosphere using standard Schlenk techniques. The title compound was synthesized by dissolving dichloridotris(triphenylphosphine) ruthenium(III) (0.500 g, 0.522 mmol) in CH2Cl2 (10 mL). To this solution was added, drop-wise, ethylenediamine (0.039 mL, 0.58 mmol) dissolved in CH2Cl2 (10 mL). The reaction mixture was stirred at room temperature for 1 h. The resulting brownish solution was filtered to remove any insoluble impurities, and the solution was concentrated under reduced pressure. The product was then precipitated by adding n-hexane. The yellow solid obtained was filtered and washed with diethyl ether (3 × 10 mL), to give the product in 85% yield. Yellow plate crystals suitable for X-ray diffraction analysis were obtained after five days by slow diffusion of hexane into a dichloromethane solution of the complex.

Experimental details

Intensity data was determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated MoKα1 (λ = 0.71073 Å) radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program Saint+, version 6.02 [1] and empirical absorption corrections were made using Sadabs [1]. Space group assignments was made using Xprep [1]. The structure was solved in the WinGX [2] Suite of programs, using intrinsic phasing through Shelxt [3] and refined using full-matrix least-squares/difference Fourier techniques on F 2 using Shelxl-2017 [3]. All C bound hydrogen atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 times those of their parent atoms. N-bound hydrogen atoms were located in the difference Fourier map and their coordinates and isotropic displacement parameters refined freely. Diagrams and publication material were generated using Ortep-3 [3], and Platon [4].

Comment

Ethylenediamine is the most widely studied bidentate nitrogen donor ligand in coordination chemistry [5]. The ethylenediamine molecule can adopt either a cis or trans conformation, due to rotation about the C–C bond [5, 6]. However, once it is coordinated to a metal atom in a bidentate chelating mode, the cis conformation of the ligand is enforced.

The chemistry of ruthenium(II) complexes have been extensively studied due to their versatility and wide range of applications in several fields; such as bioinorganic chemistry, catalysis, supramolecular and photochemistry [7]. Ruthenium complexes with chlorido and dimethylsulfoxide (DMSO) ligands have been shown to have potential application as chemotherapeutic agents [8]. Also, Ru(II) complexes with chelating diamine or diphosphine ligands have gained much attention due to their applications in catalysis and potential antimicrobial activity [7], [8], [9], [10].

Biologically, chelation is important because it has been shown that coordinating a metal ion to a ligand in this manner, has the potential of reducing the polarity of the metal ion as there will be partial sharing of the positive charge of the metal with the donor atoms of the ligand [11]. This property enhances the lipophilicity of the complex, thus increasing its permeation through the lipid membrane of the bacterial cell. It has also been reported that coordinating a ligand to a metal ion synergistically enhances the biological activity of the ligand while minimizing the cytotoxic effect of metal ion and ligand [7].

The title compound crystallizes in the monoclinic space group P21/c (no. 14), with its unit cell filled with two complexes. The bond lengths and angles are within the normal ranges and are comparable to related structures [7, 12, 13]. The ruthenium atom is coordinated in a distorted octahedral geometry with an ethylenediamine ligand chelated via the two nitrogen (N1 and N2) atoms, two monodentate P-donor triphenylphosphine (PPh3) ligands and two chlorides in a mutually trans position. The two chloride anions are bent away from their axial positions, toward the diamine ligand due to the steric effect of the bulky PPh3 ligands [7]. The distortion from linearity for the axial ligands Cl2–Ru1–Cl1 was measured at 162.06°. Similarly, the bulkiness of the phenyl groups of PPh3 resulted in the distortion of the P1–Ru1–P2 angle to 97.45°.

Bazargan et al. [5], conducted a full structural and geometrical study using the Cambridge Structural Database (CSD) combined with theoretical calculations, for various five-membered N-donor chelate rings and their complexes of various transition and non-transition metals. One of the findings of the study showed that for the ethylenediamine ligand bonded to a 4d metal ion, the ideal average N–M bond length is 2.115 Å and the N–M–N angle is 81.2°. These results are supported by the findings obtained in the current study, with the average N–M distance of 2.166 Å and N–M–N angle of 77.76°. The observed small difference in bond length and angles is in agreement with the previously observed trend between M–N bond length and the chelate bite angle which is inversely proportional [5]. In addition, there are two strong intermolecular hydrogen bonds between the amine group of one complex and the chloride atom of a second complex, with the distance of H2D⋯Cl3 at 2.48°Å and H4B⋯Cl2 at 2.85 Å.


Corresponding author: Hadley S. Clayton, Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg, South Africa, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint-Plus and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

3. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

5. Bazargan, M., Mirzaei, M., Franconetti, A., Frontera, A. On the preferences of five-membered chelate rings in coordination chemistry: insights from the Cambridge Structural Database and theoretical calculations. Dalton Trans. 2019, 48, 5476–5490; https://doi.org/10.1039/c9dt00542k.Search in Google Scholar PubMed

6. Chan, L., Hutchison, G. R., Morris, G. M. Understanding ring puckering in small molecules and cyclic peptides. J. Chem. Inf. Model. 2021, 61, 743–755; https://doi.org/10.1021/acs.jcim.0c01144.Search in Google Scholar PubMed PubMed Central

7. Al-Noaimi, M., Nafady, A., Warad, I., Alshwafy, R., Husein, A., Talib, W. H., Hadda, T. B. Heterotrimetallic Ru(II)/Pd(II)/Ru(II) complexes: synthesis, crystal structure, spectral characterization, DFT calculation and antimicrobial study. Spectrochim. Acta, Part A 2014, 122, 273–282; https://doi.org/10.1016/j.saa.2013.11.052.Search in Google Scholar PubMed

8. Bratsos, I., Jedner, S., Gianferrara, T., Alessio, E. Ruthenium anticancer compounds: challenges and expectations. CHIMIA 2007, 61, 692–697; https://doi.org/10.2533/chimia.2007.692.Search in Google Scholar

9. Zhou, H., Huang, H. A Ruthenium catalyst with simple triphenylphosphane for the enantioselective hydrogenation of aromatic ketones. ChemCatChem 2013, 5, 2253–2257; https://doi.org/10.1002/cctc.201300080.Search in Google Scholar

10. Ghosh, A., Kumar, R. Efficient heterogeneous catalytic systems for enantioselective hydrogenation of prochiral carbonyl compounds. J. Catal. 2004, 228, 386–396; https://doi.org/10.1016/j.jcat.2004.08.040.Search in Google Scholar

11. Dharmaraj, N., Viswanathamurthi, P., Natarajan, K. Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Met. Chem. 2001, 26, 105–109; https://doi.org/10.1023/a:1007132408648.10.1023/A:1007132408648Search in Google Scholar

12. Jing, Q., Zhang, X., Sun, J., Ding, K. Bulky achiral triarylphosphines mimic BINAP in Ru(II) – catalyzed asymmetric hydrogenation of ketones. Adv. Synth. Catal. 2005, 347, 1193–1197; https://doi.org/10.1002/adsc.200505054.Search in Google Scholar

13. Jia, A., Shi, L., Wu, F., Xin, Z., Zhang, Q. Syntheses, structures and immobilization of ruthenium complexes bearing N,O-Schiff-base or N,N′-diamine ligands functionalized with alkoxysilyl groups. J. Organomet. Chem. 2018, 855, 33–43; https://doi.org/10.1016/j.jorganchem.2017.12.015.Search in Google Scholar

Received: 2022-09-07
Accepted: 2022-10-10
Published Online: 2022-10-24
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 20.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0448/html
Scroll to top button