Home Physical Sciences An I 6 2 − anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
Article Open Access

An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3

  • Guido J. Reiss ORCID logo EMAIL logo , Maik Wyshusek and Jana C. Rheinländer
Published/Copyright: August 30, 2022

Abstract

C7H11I3N4O3, triclinic, P 1 (no. 2), a = 9.28478(14) Å, b = 12.2214(2) Å, c = 13.4088(2) Å, α = 76.2062(14)°, β = 88.2421(13)°, γ = 89.4102(13)°, Z = 4, V = 1476.95(4) Å3, Rgt(F) = 0.0198, wR ref = 0.0494, T = 100 K.

CCDC no.: 2201792

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Dark red block
Size: 0.16 × 0.09 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.35 mm−1
Diffractometer, scan mode: XtaLAB Synergy, ω
θ max, completeness: 32.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 64027, 10661, 0.028
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 9468
N(param)refined: 342
Programs: Diamond [1], CrysAlisPRO [2], SHELX [3], [4], [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
I1 0.500000 0.500000 0.000000 0.02532 (4)
I2 0.72732 (2) 0.33676 (2) 0.07837 (2) 0.02769 (3)
I3 1.000000 0.000000 0.000000 0.02295 (4)
I4 1.02609 (2) 0.02172 (2) 0.21160 (2) 0.03136 (4)
I5 0.57743 (2) 0.54620 (2) 0.33657 (2) 0.02765 (3)
I6 0.73787 (2) 0.70545 (2) 0.42497 (2) 0.02148 (3)
I7 0.88759 (2) 0.87813 (2) 0.49904 (2) 0.02638 (3)
O1 0.41956 (15) 0.16286 (12) 1.23298 (11) 0.0185 (3)
O2 0.08812 (15) 0.44441 (12) 1.14120 (10) 0.0167 (2)
O3 0.60392 (16) 0.14289 (12) 0.75245 (12) 0.0196 (3)
O4 0.92322 (14) 0.43309 (11) 0.64932 (10) 0.0156 (2)
O1W 0.32904 (16) 0.09026 (13) 0.81330 (12) 0.0185 (3)
H1W 0.276 (5) 0.079 (4) 0.779 (4) 0.070*
H2W 0.404 (5) 0.100 (4) 0.787 (4) 0.070*
O2W 0.68244 (17) 0.10492 (12) 0.31027 (12) 0.0188 (3)
H3W 0.749 (5) 0.102 (4) 0.273 (4) 0.070*
H4W 0.613 (5) 0.126 (4) 0.271 (4) 0.070*
N1 0.25906 (16) 0.30691 (12) 1.18344 (11) 0.0127 (2)
N2 0.33499 (16) 0.19142 (13) 1.07175 (12) 0.0140 (3)
N3 0.22853 (17) 0.24766 (13) 0.90240 (12) 0.0134 (3)
H3 0.269 (4) 0.204 (3) 0.874 (3) 0.040 (9)*
N4 0.09020 (17) 0.38360 (13) 0.93048 (12) 0.0136 (3)
H4 0.036 (3) 0.433 (3) 0.922 (2) 0.024 (7)*
N5 0.76286 (16) 0.28713 (13) 0.69941 (12) 0.0137 (3)
N6 0.67551 (17) 0.18425 (13) 0.58392 (12) 0.0149 (3)
N7 0.76881 (17) 0.25466 (13) 0.40763 (12) 0.0146 (3)
H7 0.737 (4) 0.208 (3) 0.378 (3) 0.037 (9)*
N8 0.90281 (17) 0.39127 (13) 0.43327 (12) 0.0139 (3)
H8 0.959 (3) 0.444 (3) 0.422 (2) 0.029 (8)*
C1 0.34262 (18) 0.21677 (15) 1.16653 (14) 0.0138 (3)
C2 0.16130 (18) 0.37001 (14) 1.11619 (13) 0.0126 (3)
C3 0.16029 (18) 0.33834 (14) 1.02042 (13) 0.0122 (3)
C4 0.13298 (19) 0.32846 (15) 0.86107 (14) 0.0142 (3)
H4A 0.101217 0.343470 0.792438 0.017*
C5 0.24671 (18) 0.25369 (14) 1.00170 (13) 0.0117 (3)
C6 0.4201 (2) 0.09643 (17) 1.05228 (17) 0.0214 (4)
H6A 0.401621 0.029425 1.107913 0.032*
H6B 0.522839 0.115106 1.049107 0.032*
H6C 0.392834 0.081339 0.986830 0.032*
C7 0.2848 (2) 0.34158 (18) 1.27933 (15) 0.0201 (4)
H7A 0.211494 0.396645 1.289020 0.030*
H7B 0.380586 0.375655 1.275285 0.030*
H7C 0.279616 0.275510 1.337465 0.030*
C8 0.67575 (19) 0.20124 (15) 0.68211 (14) 0.0149 (3)
C9 0.84730 (18) 0.36076 (14) 0.62594 (13) 0.0126 (3)
C10 0.83601 (19) 0.34098 (15) 0.52618 (13) 0.0129 (3)
C11 0.8603 (2) 0.33829 (16) 0.36381 (14) 0.0157 (3)
H11 0.890156 0.356637 0.293400 0.019*
C12 0.75388 (18) 0.25518 (14) 0.50885 (13) 0.0132 (3)
C13 0.5931 (2) 0.08943 (16) 0.56482 (17) 0.0203 (4)
H13A 0.493918 0.113672 0.548487 0.030*
H13B 0.592654 0.027091 0.626305 0.030*
H13C 0.638013 0.064361 0.506951 0.030*
C14 0.7572 (2) 0.30077 (17) 0.80578 (14) 0.0179 (3)
H14A 0.805933 0.370717 0.808440 0.027*
H14B 0.805391 0.236699 0.850665 0.027*
H14C 0.656419 0.303973 0.828954 0.027*

Source of material

All chemicals were obtained from commercial sources and used as purchased. The title compound was synthesised by dissolving 0.15 g theophylline (0.8 mmol) in 5 mL of 57% aqueous hydroiodid acid. Red crystals were harvested from the mother liquor after two days in the fridge at 5 °C.

Experimental details

A small isometric crystal of the title compound was directly selected from the mother liquor and mounted on a Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector [2] using a nylon loop at 100 K. An absorption correction (numerical absorption correction) was applied [2]. The structure solution and the refinement succeeded using the SHELX program system [3], [4], [5]. Atomic coordinates of hydrogen atoms belonging to the water molecules and those hydrogen atoms attached to nitrogen were refined freely. All other hydrogen atoms were added using a corresponding riding model with fixed Uiso parameters. The maximum residual peak of 2.26 eÅ−3 is found 0.64 Å apart from I7 and the deepest hole of −1.75 eÅ−3 is found 0.56 Å apart from I7.

Comment

Introduction

The term polyiodides – formerly named periodides [6] – describes a class of compounds that is defined as the anionic part of a salt-type structure, which fullfills the general formula I 2 m n n (n = 2–5, m = integer). Almost all of the currently known polyiodides consist of I, I 3 and I2 subunits. These two simple ions and the I2 molecule show a strong tendency to form extended, halogen bonded structures [7], [8], [9], [10], [11]. Polyiodides are of interest not only because of their structures, but also because of reported applications. Some important applications are listed in our preceeding article [12]. We have already shown that planar, nitrogen-based heterocyclic cations support the formation of iodine rich compounds [13, 14]. Especially using different methylxanthinium cations, some polyiodide salts have already been characterised by us [15, 16] and others [17], [18], [19]. The bonding properties of short-chain polyiodides like I 4 2 [12, 20, 21] and especially I 6 2 [22], [23], [24] are still of general interest.

Structural comments

The asymmetric unit of the title structure contains two crystallographically independent theophyllinium cations, one I 3 anion in a general position, two halves of I 3 anions on inversion centers (Wyckoff sites 1a and 1e) and two water molecules in general positions (see the figure). Thus, the overall composition can be summerized as theophyllinium triiodide monohydrate [systematic name: 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium triiodide—water (1/1)].

Each of the two crystallographically independent theophyllinium cations forms a dimer with a symmetry related theophyllinium cation by NH⃛O hydrogen bonds (see the left part of the figure). These dimers are furthermore connected via O–H⃛O hydrogen bonds between the water molecules and the cations to furnish a wavy layer. The bond lengths and angles within the cations as well as the geometric parameters in the various hydrogen bonds are in the expected ranges [16]. The two I 3 anions located on inversion centers (see the middle section of the Figure; I2−I1−I2′; I4−I3−I3″; ′ = 1−x 1−y, −z, ″ = 2−x, −y, −z) are not connected to any other triiodide anions and feature only weak hydrogen bonds to water molecules and the cations. The triiodide anion located in a general position is attached to its symmetry-related triiodide anion (inversion symmetry; Wyckoff site 1b) (see middle part of the figure; I7⃛I7‴ distance = 3.6605(3) Å; symmetry operation: 2−x, 2−y, 1−z). This secondary I⃛I bonding interaction is weak, but significantly shorter than any van der Waals distances in various scales [25]. To classify this secondary halogen bond in more detail a comparison with some literature known I 6 2 anions is needed. Structures of catenated triodides have not been considered for this comparison. To the best of our knowledge, the shortest halogen bonded triiodide—triiodide distance of 3.5017(2) Å is found in a structure, which is characterised by strong charge supported hydrogen bonds between the coutercation and both terminal I atoms of the I 6 2 anion [22]. A distance of 3.6317(4) Å is found for the I 6 2 anion trapped in the van der Waals void of a hydrogen bonded framework [23]. Recently even in the case of a distance of 3.848 Å [24] a halogen bonding interaction was discussed by the authors. Thus the I7⃛I7‴ distance of 3.6733(12) Å in the title structure is in the upper part of the scope of such halogen bonds, but we think that the motif must be discussed as another I 6 2 anion. In detail, each triiodide part within the I 6 2 anion shows a bonding angle of 175.08(2)° and the angle between the two I 3 ions (I8−I7⃛I7‴) is 160.74(1)°. In general all I−I bonding parameters of the triiodide anions are in the expected ranges (I1−I2 = 2.9307(2) Å; I3−I4 = 2.9296(2) Å; I5−I6 = 2.9463(2) Å; I6−I7 = 2.9183(2) Å) [13].

A packing diagram with a view against the c axis is shown in the right part of the figure. Classical hydrogen bonding interactions only occur in the aforementioned layers consisting of the cations and the water molecules. These layers are stacked along the b axis. The hydrogen bonded layers are connected via van der Waals interactions only (green line in the right part of the figure). The triiodide anions as well as the I 6 2 anions fill the voids within and between these layers. One of the triiodide anions (right part of the figure, I4−I3−I4″) and the I 6 2 anions are oriented along [110], whereas the triiodide anion I2−I1−I2′ is almost oriented along [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

Conclusion

Recently we have shown that hydrogen bonded motifs constructed by theophyllinium cations form layered and more complex frameworks, that are able to stabilize interesting couter anions [[26] and references cited there]. The title structure is one more example to show the performance of the theophyllinium cation to act as a tecton in crystal engineering.


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung Heinrich–Heine–Universität Düsseldorf Universitätsstrasse 1, D-40225 Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North–Rhine Westphalia; German Research Foundation (DFG): Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector

Award Identifier / Grant number: No. 440366605

Funding source: Open Access fund of the Heinrich–Heine–Universität Düsseldorf

Award Identifier / Grant number: ULBD-22–11676

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Ministry of Innovation, Science and Research of North–Rhine Westphalia; the German Research Foundation (DFG) for financial support (Rigaku XtaLAB Synergy equipped with the HyPix-6000 detector, project no. 440366605); and finally funded by the Open Access fund of the Heinrich–Heine–Universität Düsseldorf (project no. ULBD-22–11676).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System, Ver. 4.5.2; Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar

2. Oxford Diffraction. CrysAlisPRO, (version 1.171.41.93a); Oxford Diffraction Ltd.: Oxford, UK, 2020.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/S0021889811043202.Search in Google Scholar PubMed PubMed Central

6. Tilden, W. A. On the periodides of some of the organic bases. J. Chem. Soc. 1865, 18, 99–105; https://doi.org/10.1039/js8651800099.Search in Google Scholar

7. Tebbe, K.-F. Polyhalogen cations and polyhalide anions. In Homoatomic Rings, Chain and Macromolecules of Main-Group Elements; Wood, H., Belger, F., Eds. Elsevier: Amsterdam, 1977; pp. 551–606.Search in Google Scholar

8. Blake, A. J., Devillanova, F. A., Gould, R. O., Li, W. S., Lippolis, V., Parsons, S., Radek, C., Schröder, M. Template self-assembly of polyiodide networks. Chem. Soc. Rev. 1998, 27, 195–205; https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<293::AID-ANIE293>3.0.CO;2-5.10.1039/a827195zSearch in Google Scholar

9. Svensson, P. H., Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684; https://doi.org/10.1021/cr0204101.Search in Google Scholar PubMed

10. Peuronen, A., Rinta, H., Lahtinen, M. N⃛I halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide. CrystEngComm 2015, 17, 1736–1740; https://doi.org/10.1039/c4ce01866d.Search in Google Scholar

11. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.Search in Google Scholar PubMed PubMed Central

12. Reiss, G. J. Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide – water (1/2), C8H16I5N2O. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1047–1050; https://doi.org/10.1515/ncrs-2020-0164.Search in Google Scholar

13. Reiss, G. J. Halogen and hydrogen bonding in the layered crystal structure of 2-iodoanilinium triiodide, C6H7I4N. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 899–902; https://doi.org/10.1515/ncrs-2019-0127.Search in Google Scholar

14. Reiss, G. J., van Megen, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B 2012, B67, 5–10; https://doi.org/10.1515/znb-2012-0102.Search in Google Scholar

15. Merkelbach, J., Majewski, M. A., Reiss, G. J. Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N4O2. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 941–944; https://doi.org/10.1515/ncrs-2018-0125.Search in Google Scholar

16. Reiss, G. J. A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 737–739; https://doi.org/10.1515/ncrs-2019-0082.Search in Google Scholar

17. Herbstein, F., Kaftory, M., Kapon, M., Saenger, W. Structures of three crystals containing approximately—linear chains of triiodide ions: [Tetra n-butylammonium triiodide, bis(benzamide) hydrogen triiodide, caffeine monohydrate hydrogen triiodide]. Z. Kristallogr. Cryst. Mater. 1981, 154, 11–30; https://doi.org/10.1524/zkri.1981.154.14.11.Search in Google Scholar

18. Cingi, M. B., Lanfredi, A. M. M., Tiripicchio, A., Bandoli, G., Clemente, D. A. Crystal structure of 2:1 molecular complexes of caffeine with hexaaquamagnesium(II) bromide and hexaaquamanganese(II) triiodide iodide. Inorg. Chim. Acta 1981, 52, 237–243; https://doi.org/10.1016/s0020-1693(00)88603-x.Search in Google Scholar

19. Herbstein, F., Kapon, M. I164− Ions in crystalline (theobromine)2 . H2I8; X-ray structure of (theobromine)2. H2I8. J. Chem. Soc., Chem. Commun. 1975, 16, 677–678; https://doi.org/10.1039/c39750000677.Search in Google Scholar

20. Grześkiewicz, A. M., Kubicki, M. Factors affecting charge transfer in tetraiodide dianions. New J. Chem. 2018, 42, 10661–10669.10.1039/C8NJ00737CSearch in Google Scholar

21. Weçławik, M., Gagor, A., Piecha, A., Jakubas, R., Medycki, W. Synthesis, crystal structure and phase transitions of a series of imidazolium iodides. CrystEngComm 2013, 15, 5633–5640.10.1039/c3ce40559aSearch in Google Scholar

22. van Megen, M., Reiss, G. J. I62− anion composed of two symmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 2013, 1, 3–13; https://doi.org/10.3390/inorganics1010003.Search in Google Scholar

23. Meyer, M. K., Graf, J., Reiss, G. J. Dimer oder nicht dimer, das ist hier die Frage: Zwei benachbarte I3−–Ionen eingeschlossen in Hohlräumen einer komplexen Wirtsstruktur. Z. Naturforsch. B 2010, 65, 1462–1466; https://doi.org/10.1515/znb-2010-1209.Search in Google Scholar

24. Korobeinikov, N. A., Usoltsev, A. N., Shentseva, I. A., Abramov, P. A., Korolkov, I. V., Plusnin, P. E., Kolesov, B. A., Sokolov, M. N., Adonin, S. A. Triiodide salts of 4-dimethylamino- and 3-bromo-1-methylpyridinium: crystal structures and features of non-covalent I⃛I interactions in solids. J. Struct. Chem. 2022, 63, 988–995; https://doi.org/10.1134/s0022476622060178.Search in Google Scholar

25. Hu, S.-Z., Zhou, Z.-H., Xie, Z.-X., Robertsion, B. E. A comparative study of crystallographic van der Waals radii. Z. für Kristallogr. Cryst. Mater. 2014, 229, 517–523; https://doi.org/10.1515/zkri-2014-1726.Search in Google Scholar

26. Reiss, G. J., Wyshusek, M. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4]− anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9. Z. Kristallogr. N. Cryst. Struct. 2021, 237, 121–124; https://doi.org/10.1515/ncrs-2021-0399.Search in Google Scholar

Received: 2022-07-14
Accepted: 2022-08-16
Published Online: 2022-08-30
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0358/html
Scroll to top button