Home The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
Article Open Access

The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO

  • Kiyoshi Fujisawa ORCID logo EMAIL logo , Taisei Kataoka , Kohei Terashima and Edward R. T. Tiekink ORCID logo
Published/Copyright: September 8, 2022

Abstract

C15H13BF9N7NiO, orthorhombic, Pnma (no. 62), a = 17.8513(3) Å, b = 13.3869(2) Å, c = 8.5944(2) Å, V = 2053.83(7) Å3, Z = 4, Rgt (F) = 0.0235, wRref (F 2) = 0.0690, T = 124(2) K.

CCDC no.: 2202391

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Blue block
Size: 0.10 × 0.05 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.05 mm−1
Diffractometer, scan mode: Rigaku XtaLAB P200, ω
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 32,121, 2455, 0.019
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2314
N(param)refined: 173
Programs: CrysAlisPRO [1], SIR2014 [2], SHELX [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ni 0.33867 (2) 0.250000 0.39357 (3) 0.02390 (9)
F1 0.40975 (5) −0.01000 (8) 0.28207 (11) 0.0473 (2)
F2 0.42568 (5) 0.11657 (7) 0.13338 (11) 0.0415 (2)
F3 0.38823 (5) −0.02285 (7) 0.03699 (11) 0.0448 (2)
F4 0.30823 (8) 0.250000 0.95749 (13) 0.0417 (3)
F5 0.36748 (5) 0.17008 (7) 0.77790 (10) 0.0420 (2)
O1 0.48522 (9) 0.250000 0.5066 (2) 0.0564 (5)
N1 0.42622 (9) 0.250000 0.44993 (19) 0.0312 (3)
N11 0.28345 (6) 0.14722 (8) 0.26697 (12) 0.0255 (2)
N12 0.20739 (6) 0.15594 (8) 0.25877 (12) 0.0262 (2)
N21 0.25714 (8) 0.250000 0.55595 (17) 0.0251 (3)
N22 0.18437 (9) 0.250000 0.50719 (18) 0.0254 (3)
C1 0.38091 (8) 0.03826 (10) 0.15925 (16) 0.0316 (3)
C2 0.30112 (7) 0.06736 (10) 0.18165 (14) 0.0279 (3)
C3 0.23745 (8) 0.02247 (11) 0.11978 (16) 0.0323 (3)
H3 0.235032 −0.035242 0.055644 0.039*
C4 0.17856 (8) 0.08026 (10) 0.17211 (15) 0.0299 (3)
C5 0.09637 (8) 0.06648 (12) 0.14620 (18) 0.0379 (3)
H5A 0.069968 0.071360 0.245889 0.057*
H5B 0.087290 0.000605 0.100177 0.057*
H5C 0.077977 0.118446 0.075546 0.057*
C6 0.32425 (11) 0.250000 0.8056 (2) 0.0305 (4)
C7 0.25410 (11) 0.250000 0.7116 (2) 0.0270 (4)
C8 0.18067 (11) 0.250000 0.7639 (2) 0.0306 (4)
H8 0.163846 0.250000 0.868784 0.037*
C9 0.13699 (11) 0.250000 0.6304 (2) 0.0287 (4)
C10 0.05361 (11) 0.250000 0.6139 (2) 0.0347 (4)
H10A 0.030469 0.250000 0.717268 0.052*
H10Ba 0.037857 0.309772 0.556740 0.052*
H10Ca 0.037857 0.190228 0.556740 0.052*
B1 0.16920 (11) 0.250000 0.3297 (2) 0.0262 (4)
H1 0.107581 0.249999 0.305203 0.031*
  1. aOccupancy: 0.5.

Source of material

The title complex (I) was obtained by modified synthetic procedures from the reaction of [Ni(NO)(Br)(PPh3)2] [5, 6] or [Ni(NO)(I)]n [7] with hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borate, LoF. To a solution of [Ni(NO)(Br)(PPh3)2] (0.139 g, 0.201 mmol) in dichloromethane (10 mL) was added K[LoF] (0.0996 g, 0.200 mmol) in dichloromethane (10 mL). The resulting dark-blue solution was stirred under an argon atmosphere for 3 h, after which the solution was filtered through Celite to remove any undissolved powder. To the filtrate, was added one volume equivalent of n-heptane. Recrystallisation from this mixture, held at −30 °C, gave dark-blue crystals. Yield: 0.0437 g, 0.0798 mmol (40%).

The second method had [Ni(NO)(I)]n as the nickel source. Thus, [Ni(NO)(I)]n (0.164 g, 0.761 mmol) was reacted with K[Lof] (0.332 g, 0.666 mmol) in acetone (10 mL). The resulting dark-blue solution was stirred under an argon atmosphere for 1 h. The solution was filtered off through Celite to remove any undissolved powder. The filtrate was evaporated under vacuum. The resulting solid was recrystallised from ethanol/tetrahydrofuran (1:1) at −30 °C to give dark-blue crystals. Yield: 0.178 g, 0.325 mmol (49%). 1 H NMR (CDCl3, 500 MHz): δ 2.26 (s, 9H, CH3), 6.47 (s, 3H, pz-4H). 13 C{ 1 H} NMR (CDCl3, 125 MHz): δ 12.4 (CH3), 106.0 (pz-4C), 122.5 (CF3, q, JC,F = 269 Hz), 145.0 (pz-3C, q, JC,F = 38 Hz), 145.9 (pz-5C). Anal. Calcd. for C15H13BF9N7NiO. C, 32.89; H, 2.39; N, 17.90%. Found: C, 32.69; H, 2.35, N, 17.99%. IR (KBr, cm−1) 2564 m (νB–H), 1823 versus (νN–O). UV–Vis (CH2Cl2, λ max/nm) (ε M−1 cm−1): 593 (440), 249 (13,000). The spectral details recorded for (I) obtained from the [Ni(NO)(Br)(PPh3)2] precursor were identical.

Experimental details

The B- and C-bound H atoms were geometrically placed (B–H = 1.12 Å and C–H = 0.98 Å) and refined as riding with U iso(H) = 1.2Ueq (B) and U iso(H) = 1.5Ueq (C), respectively. Owing to poor agreement, one reflection affected by the beam-stop, i.e. (2 0 0), was removed from the final cycles of refinement.

Comment

Nitric oxide (NO) is a non-innocent ligand [8] which readily coordinates many transition metal ions, often to form stable NO-containing complexes [9]. Previous interest in transition metal NO complexes led to experiments with the anionic, sterically hindered N3-tripodal ligand, hydridotris[3-(t-butyl)-5-isopropylpyrazol-1-yl]borate, hereafter denoted as L, where certain control over the coordination sphere can be exerted by the relatively large t-butyl substituent [10]. In continuation of this interest, a series complexes, namely Fe(L)(3NO), Co(L)(3NO), Ni(L)(3NO) and Cu(L)(NO.) [10]; in the Cu complex the NO ligand is present as a radical, i.e. NO., while the other NO ligands are functioning as a nitroxyl anion, i.e. (3NO) [10]. Their electronic structures were investigated by DFT calculations and some physicochemical properties determined [10]. A particular interest was to determine how the electronic states of the supporting ligands can affect the properties and reactivity of the complexes. This research led to the synthesis of title nickel(II) complex, Ni(Lof)NO, (I), where the tripodal ligand, LoF, is the hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borate anion which features an electron-withdrawing CF3 substituent. The CF3 group has unique electronegativity, hydrophobicity, metabolic stability and bioavailability, and is widely found in organic molecules [11, 12]. Complex (I) was obtained by the reaction of [Ni(NO)(Br)(PPh3)2Br] or [Ni(NO)(I)]n with K[LoF].

The molecular structure of (I) is shown in the figure (50% displacement ellipsoids). The crystallographic asymmetric-unit comprises half a molecule as the complex is bisected by a mirror plane. The Ni atom is coordinated by the three N atoms of the tripodal ligand and the NO–N atom. The Ni–N11 and Ni–N21 bond lengths [2.0121(11) and 2.0164(15) Å] are experimentally equivalent and considerably longer than the Ni–N1 [1.6361(16) Å] bond; the N1–O1 bond length is 1.160(2) Å. The presence of the tripodal ligand, with a restricted bite distance, introduces significant distortions in the N4-coordination geometry. Thus the range of N–Ni–N angles is substantial with the narrowest angle being 86.28(6)°, for N11–Ni–N11 i , and the widest being 128.90(4)°, for N1–Ni–N11; symmetry operation (i): x, 1/2 − y, z. The value of τ 4 = [360 − (α + β)/141] = 0.73, where α and β are the two widest angles subtended at the metal centre [13]. The value compares with 0.00 for an ideal square-planar geometry, 0.85 for a trigonal-pyramidal arrangement and 1.00 for a tetrahedral geometry. Indeed, the value of τ 4 in (I) is closest to 0.64 which corresponds to a see-saw geometry. The Ni–N1–O1 angle is 172.42(17)°. When viewed down the B1–Ni axis, the molecule approximates three-fold symmetry.

There are two closely related nickel(II) complexes available for comparison, namely the dimethyl L- derivative [6] and the mixed i-Pr and t-Bu L- species [5], hereafter (II) and (III), respectively. Two independent half-molecules comprise the asymmetric unit in (II), each disposed about a mirror plane. In (III), where the t-Bu groups are proximate to the nickel atom, the complex also has crystallographically imposed mirror symmetry. The values of τ 4 for (II) are 0.76 and 0.75, and for (III), 0.79, both indicative of distortions towards a trigonal-pyramidal geometry. The respective ranges of Ni–N(tripodal) bond lengths for (I)–(III) are 2.0121(11)–2.0164(15) Å, 1.980(3)–2.006(4) Å, and 2.026(3)–2.024(5) Å, suggesting a trend in bond lengths (II) < (I) < (III) which correlates with the steric bulk of the substituent proximate to the nickel(II) centre, i.e. Me < CF3 < t-Bu. The Ni–N(NO) bond lengths are 1.6361(16) Å, 1.619(6) & 1.617(6) Å and 1.651(6) Å for (I)–(III), respectively, again, consistent with steric hindrance at the metal centre.

The strong ν(N–O) band observed in the IR spectra is very sensitive to nature of the tripodal ligands. Thus, the ν(N–O) band (I) was measured at 1823 cm−1, which compares to 1786 cm−1 in (II) and 1780 cm−1 in (III). These variations might correlate with the Ni–N–O bond angles which follow the order 172.45(17)°, 175.3(7) & 178.5(6)° and 179.1(7)° for (I)–(III), respectively. Hence, the CF3 substituent leads to lower ν(N–O) by ca 40 cm−1, due to the change in Ni–NO π bonding interaction [5, 9, 10]. Similar trends are observed in ν(C–O) frequencies observed in a series of copper(I) carbonyl complexes ligated by the hydridotris(pyrazolyl)borate ligands [12, 14].

As indicated above, the oxidation state of the nickel atoms in all three complex is +II, and the metal centre is in the high-spin state. Therefore, the total spin of the Ni(II) centre should be S = 1. However, the NMR spectra clearly indicate that (I) is diamagnetic (S = 0). This originates from antiferromagnetic coupling between the d-electrons of the Ni(II) centre (S tot = 1) and the π*-electrons of the nitroxyl anion (3NO) (S = 1), so that, S = 1, consistent with diamagnetic behaviour [5, 10, 15].

The molecular packing of (I) was analysed employing PLATON [16]. The NO–O1 atom participates in two independent C–H⋯O interactions, both with a methyl-bound H atom derived from two different methyl groups [C5–H5c⋯O1ii: H5c⋯O1ii = 2.52 Å, C5⋯O1ii = 3.4201(19) Å with angle at H5c = 153° for (ii): −1/2 + x, 1/2 − y, 1/2 − z; C10–H10c⋯O1iii: H10c⋯O1iii = 2.52 Å, C10⋯O1iii = 3.483(2) Å with angle at H10c = 174° for (iii): −1/2 + x, 1/2 − y, 3/2 − z]. With the application of mirror symmetry, these interactions extend in two-dimensions and lead to supramolecular layers in the ab-plane which stack along the c-axis. From a consideration of close interatomic separations, the most directional interactions between layers to give rise to a three-dimensional architecture are C–F⋯π(pyrazoyl) interactions [C6–F4⋯Cg(N11, N12, C2–C4)iv: F4⋯Cg(N11, N12, C2–C4)iv = 3.1748(11) Å with angle at F4 = 136.15(4) Å for (iv): x, y, 1 + z].

Using standard methods [17], a surface contact analysis of the molecular packing was conducted employing CrystalExplorer [18]. This analysis points to the obvious prominence of H and F in surface contacts. This is reflected in the large percentage of F⋯H/H⋯F [49.5%] contacts. H participates in 30.4% of all other contacts, viz. O⋯H/H⋯O [10.4%], N⋯H/H⋯N [7.9%], C⋯H/H⋯C [5.9%], H⋯H [6.0%] and Ni⋯H/H⋯Ni [0.2%] while F participates in 19.5% of the remaining contacts which include F⋯C/C⋯F [8.7%], F⋯F [6.9%] and F⋯N/N⋯F [3.9%]. The remaining percentage surface contacts are due to C⋯C [0.6%].


Corresponding author: Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail:

Funding source: Sunway University

Award Identifier / Grant number: GRTIN-RRO-56-2022

Acknowledgements

KF is grateful for support from the joint usage/research programme “Artificial Photosynthesis” based at Osaka City University. Sunway University Sdn Bhd is thanked for support of crystallographic work through Grant No. GRTIN-RRO-56-2022.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Sunway University Sdn Bhd Grant No. GRTIN-RRO-56-2022.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku. Oxford Diffraction. CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Soma, S., Stappen, C. V., Kiss, M., Szilagyi, R. K., Lehnert, N., Fujisawa, K. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure. J. Biol. Inorg. Chem. 2016, 21, 757–775; https://doi.org/10.1007/s00775-016-1366-7.Search in Google Scholar PubMed

6. Landry, V. K., Pang, K., Quan, S. M., Parkin, G. Tetrahedral nickel nitrosyl complexes with tripodal [N3] and [Se3] donor ancillary ligands: structural and computational evidence that a linear nitrosyl is a trivalent ligand. Dalton Trans. 2007, 820–824; https://doi.org/10.1039/b616674a.Search in Google Scholar PubMed

7. Haymore, B., Feltham, R. D. Nitrosyliron, -cobalt, and nickel iodides. Inorg. Synth. 1973, 14, 81–89.10.1002/9780470132456.ch16Search in Google Scholar

8. Kaim, W., Schwederski, B. Non-innocent ligands in bioinorganic chemistry – an overview. Coord. Chem. Rev. 2010, 254, 1580–1588; https://doi.org/10.1016/j.ccr.2010.01.009.Search in Google Scholar

9. Lehnert, N., Kim, E., Dong, H. T., Harland, J. B., Hunt, A. P., Manickas, E. C., Oakley, K. M., Pham, J., Reed, G. C., Alfaro, V. S. The biologically relevant coordination chemistry of iron and nitric oxide: electronic structure and reactivity. Chem. Rev. 2021, 121, 14682–14905; https://doi.org/10.1021/acs.chemrev.1c00253.Search in Google Scholar PubMed

10. Lehnert, N., Fujisawa, K., Camarena, S., Dong, H. T., White, C. J. Activation of non-heme iron-nitrosyl complexes: turning up the heat. ACS Catal. 2019, 9, 10499–10518; https://doi.org/10.1021/acscatal.9b03219.Search in Google Scholar

11. Ikarugi, R., Fujisawa, K., Tiekink, E. R. T. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN3}manganese(II), C30H26B2F18MnN12. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 85–87; https://doi.org/10.1515/ncrs-2021-0395.Search in Google Scholar

12. Fujisawa, K., Yoshida, M., Miyashita, Y., Okamoto, K. Copper(I) complexes with fluorinated hydrotris(pyrazolyl)borate: influence of electronic effects on their structure, physicochemical properties, and reactivity. Polyhedron 2009, 28, 1447–1454; https://doi.org/10.1016/j.poly.2009.03.006.Search in Google Scholar

13. Yang, L., Powell, D. R., Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964; https://doi.org/10.1039/b617136b.Search in Google Scholar PubMed

14. Fujisawa, K., Ono, T., Ishikawa, Y., Amir, N., Miyashita, Y., Okamoto, K., Lehnert, N. Structural and electronic differences of copper(I) complexes with tris(pyrazolyl)methane and hydrotris(pyrazolyl)borate ligands. Inorg. Chem. 2006, 45, 1698–1713; https://doi.org/10.1021/ic051290t.Search in Google Scholar PubMed

15. Tomson, N. C., Crimmin, M. R., Petrenko, T., Rosebrugh, L. E., Sproules, S., Boyd, W. C., Bergman, R. G., DeBeer, S., Toste, F. D., Wieghardt, K. A step beyond the Feltham–Enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)–(NO)– description of Tp*M(NO) (M = Co, Ni). J. Am. Chem. Soc. 2011, 133, 18785–18801; https://doi.org/10.1021/ja206042k.Search in Google Scholar PubMed

16. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. 2020, E76, 1–11; https://doi.org/10.1107/s2056989019016244.Search in Google Scholar

17. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

18. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

Received: 2022-07-22
Accepted: 2022-08-19
Published Online: 2022-09-08
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0369/html
Scroll to top button