Home The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
Article Open Access

The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4

  • Soon Young Shin , Seunghyun Ahn and Dongsoo Koh ORCID logo EMAIL logo
Published/Copyright: October 20, 2022

Abstract

C21H16O4, monoclinic, P21/n (no. 14), a = 13.531(6) Å, b = 8.390(3) Å, c = 14.288(5) Å, β = 95.322(15)°, V = 1615.1(11) Å3, Z = 4, Rgt (F) = 0.0588, wRref (F 2) = 0.1795, T = 243(2) K.

CCDC no.: 2211999

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.35 × 0.19 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Photon III M14, φ and ω
θ max, completeness: 28.3°, >99%
N(hkl)measured, N(hkl)unique, R int: 22,301, 3996, 0.104
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2950
N(param)refined: 228
Programs: Bruker [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.44741 (14) 0.1623 (2) 0.46621 (12) 0.0357 (4)
C2 0.50026 (13) 0.2727 (2) 0.53500 (12) 0.0344 (4)
C3 0.34777 (12) 0.24218 (19) 0.57697 (12) 0.0329 (4)
C4 0.34783 (13) 0.1507 (2) 0.49765 (12) 0.0350 (4)
C5 0.26188 (15) 0.0662 (2) 0.46344 (14) 0.0445 (5)
H5 0.2612 0.0039 0.4087 0.053*
C6 0.18013 (15) 0.0771 (2) 0.51164 (15) 0.0477 (5)
H6 0.1222 0.0221 0.4891 0.057*
C7 0.17957 (14) 0.1695 (2) 0.59558 (14) 0.0398 (4)
C8 0.26597 (12) 0.25499 (19) 0.63075 (12) 0.0348 (4)
C9 0.26689 (14) 0.3431 (2) 0.71501 (14) 0.0407 (4)
H9 0.3244 0.3986 0.7382 0.049*
C10 0.18381 (16) 0.3475 (2) 0.76279 (16) 0.0482 (5)
H10 0.1846 0.4054 0.8192 0.058*
C11 0.09771 (16) 0.2661 (3) 0.72817 (17) 0.0514 (5)
H11 0.0408 0.2708 0.7612 0.062*
C12 0.09554 (15) 0.1800 (3) 0.64707 (17) 0.0488 (5)
H12 0.0369 0.1265 0.6250 0.059*
C13 0.59487 (13) 0.3185 (2) 0.53678 (13) 0.0357 (4)
H13 0.6303 0.2741 0.4895 0.043*
C14 0.65183 (13) 0.42726 (19) 0.60096 (12) 0.0332 (4)
C15 0.75494 (13) 0.4328 (2) 0.59891 (12) 0.0346 (4)
C16 0.81202 (13) 0.5389 (2) 0.65694 (12) 0.0364 (4)
C17 0.76600 (14) 0.6373 (2) 0.71726 (14) 0.0419 (4)
H17 0.8039 0.7099 0.7557 0.050*
C18 0.66408 (14) 0.6294 (2) 0.72118 (13) 0.0419 (4)
H18 0.6336 0.6955 0.7631 0.050*
C19 0.60726 (13) 0.5258 (2) 0.66439 (13) 0.0373 (4)
H19 0.5383 0.5209 0.6681 0.045*
C20 0.85538 (19) 0.3787 (3) 0.47303 (16) 0.0585 (6)
H20A 0.8207 0.4667 0.4404 0.088*
H20B 0.8642 0.2932 0.4289 0.088*
H20C 0.9198 0.4148 0.5005 0.088*
C21 0.97169 (15) 0.6384 (3) 0.70991 (15) 0.0494 (5)
H21A 0.9539 0.7478 0.6942 0.074*
H21B 1.0411 0.6213 0.7011 0.074*
H21C 0.9608 0.6179 0.7750 0.074*
O1 0.48285 (10) 0.09806 (16) 0.40039 (9) 0.0452 (4)
O2 0.43599 (9) 0.31936 (14) 0.60111 (9) 0.0366 (3)
O3 0.79900 (10) 0.32251 (15) 0.54507 (10) 0.0434 (3)
O4 0.91200 (10) 0.53332 (18) 0.65050 (10) 0.0480 (4)

Source of material

The title compound was obtained through a two-step reaction with the chalcone intermediate. To a mixture of 1′-hydroxy-2′-acetonaphthone (186 mg, 1 mmol) and 2,3-dimethoxybenzaldehyde (166 mg, 1 mmol) in 25 mL of ethanol, 2 mL of aq. KOH (40%) was added. The reaction mixture was stirred at room temperature for 30 h. After the completion of reaction, the reaction mixture was poured into ice water (40 mL) and was acidified with 3 N HCl (pH = 3) to give precipitations. The resulting solid was filtered, washed with water and purified form ethanol to afford pure chalcone intermediate. Chalcone compound (133 mg, 0.4 mmol) was dissolved in 3.5 mL of pyridine and then mercury (II) acetate (159 mg, 0.5 mmol) was added to a reaction solution. The reaction mixture was heated at 383 K for 2 h. The reaction mixture was cooled to room temperature. It gave a precipitate which was filtered under vacuum. To obtain single crystal of the title compound, the crude solid was recrystallized in ethanol.

Experimental details

Data collections and reduction were carried out using the Bruker software APEX2 and SAINT including SADABS [1]. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

Aurone is a 5-membered ring analogue of flavonone with a six-membered ring. While flavonone has an endo-cyclic α, β-unsaturated carbonyl group in the chromenone structure, aurone has a benzofuranone structure and an exo-cyclic α, β-unsaturated carbonyl group. The αβ-unsaturated carbonyl group reacts with the thiol group of glutathione (GSH) as a Michael acceptor to reduce the intracellular GSH concentration [5], [6], [7]. In normal cells, GSH reduces ROS, making cell function beneficial [8]. Since cancer cells have a higher concentration of ROS than normal cells [9], when GSH that captures ROS decreases, the rapid increase in ROS leads to death of cancer cells [10]. The development of anticancer drugs using this principle is actively underway [11]. As an extension of research on compounds with more effective ROS generating activity [12], [13], [14], the title aurone compound was synthesized.

In the title compound shown in the figure, the C2=C13 double bond adopts a Z-configuration, which was defined by the dihedral angle of −2.82(3)° for O2–C2–C13–C14. One methoxy group at the ortho position (C-16) of the benzene ring is nearly coplanar with the ring (C17–C16–O4–C21 [0.7(3)°]), while the other methoxy group at the meta position (C-15) is highly twisted in the ring (C16–C15–O3–C20 [−64.1(2)°]). The naphthlene ring ([C3–C12]; r.m.s. deviations 0.016 Å) is tilted at an angle of 16.80(2)° with respect to the benzene ring ([C14–C19]; r.m.s. deviations 0.008 Å). In the crystal, pairs of weak C11–11⋯O1 and C21–H21⋯O1 hydrogen bonds link the molecules into chains propagating along the ac-plane.


Corresponding author: Dongsoo Koh, Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Republic of Korea, E-mail:

Funding source: Konkuk University

Acknowledgements

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF-2021R1F1A1052699). S. Y. Shin was supported by the KU Research Professor Program of Konkuk University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Basic Science Research Program (award No. NRF-2021R1F1A1052699), KU Research Professor Program of Konkuk University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Franco, R., Cidlowski, J. A. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009, 16, 1303–1314; https://doi.org/10.1038/cdd.2009.107.Search in Google Scholar PubMed

6. Shan, F., Shao, Z., Jiang, S., Cheng, Z. Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med. 2016, 5, 3166–3175; https://doi.org/10.1002/cam4.881.Search in Google Scholar PubMed PubMed Central

7. Adams, D. J., Dai, M., Pellegrino, G., Wagner, B. K., Stern, A. M., Shamji, A. F., Schreiber, S. L. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc. Natl. Acad. Sci. USA 2012, 109, 15115–15120; https://doi.org/10.1073/pnas.1212802109.Search in Google Scholar PubMed PubMed Central

8. Liu, T., Sun, L., Zhang, Y., Wang, Y., Zheng, J. Imbalanced GSH/ROS and sequential cell death. J. Biochem. Mol. Toxicol. 2022, 36, e22942; https://doi.org/10.1002/jbt.22942.Search in Google Scholar PubMed

9. Kumari, S., Badana, A. K., Malla, R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights 2018, 13, 1177271918755391; https://doi.org/10.1177/1177271918755391.Search in Google Scholar PubMed PubMed Central

10. Raj, L., Ide, T., Gurkar, A., Gurkar, A. U., Foley, M., Schenone, M., Li, X., Tolliday, N. J., Golub, T. R., Carr, S. A., Shamji, A. F., Stern, A. M., Mandinova, A., Schreiber, S. L., Lee, S. W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011, 475, 231–234; https://doi.org/10.1038/nature10167.Search in Google Scholar PubMed PubMed Central

11. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203; https://doi.org/10.1038/s12276-020-0384-2.Search in Google Scholar PubMed PubMed Central

12. Lee, K., Lee, D. H., Kim, J.-H., Shin, S. Y, Lee, Y. H., Koh, D. The chalcone derivative HymnPro generates reactive oxygen species through depletion of intracellular glutathione. Appl. Biol. Chem. 2016, 59, 391–396; https://doi.org/10.1007/s13765-016-0168-5.Search in Google Scholar

13. Shin, S. Y., Jung, E., Lim, Y., Lee, H. J., Rhee, J. H., Yoo, M., Ahn, S., Koh, D. Synthesis, crystal structure, Hirshfeld surface analysis and docking studies of a novel flavone–chalcone hybrid compound demonstrating anticancer effects by generating ROS through glutathione depletion. Crystals 2022, 12, 108; https://doi.org/10.3390/cryst12010108.Search in Google Scholar

14. Shin, S. Y., Lee, J. M., Lee, M. S., Koh, D., Jung, H., Lim, Y., Lee, Y. H. Targeting cancer cells via the reactive oxygen species-mediated unfolded protein response with a novel synthetic polyphenol conjugate. Clin. Cancer Res. 2014, 20, 4302–4313; https://doi.org/10.1158/1078-0432.ccr-14-0424.Search in Google Scholar

Received: 2022-09-13
Accepted: 2022-10-10
Published Online: 2022-10-20
Published in Print: 2022-12-16

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C48H40Cl4O4
  4. Crystal structure of (bis(1,10-phenanthroline-κ 2 N,N′))-(3,5-dinitrosalicylato-κ 2 O,O′)nickel(II), C31H18N6NiO7
  5. Crystal structure of {N,N′-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane-κ4 O,N,N′,O′}zinc(II), C20H20F2N2O4Zn
  6. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ3 N,N′,O]-isothiocyanato-nickel(II), C12H14BrN3NiOS
  7. Crystal structure of 9-bromo-4-(6-methoxypyridin-2-yl)-5,6-dihydrobenzo[h]quinazolin- 2-amine, C18H15BrN4O
  8. The crystal structure of imidazolium nitrate, C3H5O3N3
  9. Crystal structure of diiodido-bis(6,6′-dimethoxy-2,2′-(ethane-1,2-diylbis(nitrilomethanylylidene)) diphenolato)tricadmium(II), C36H36Cd3I2N4O8
  10. Crystal structure of [diaqua-bis(2-((1H-tetrazol-1-yl)methyl)-5-carboxy-1H-imidazole-4-carboxylato-κ2 N,O) manganese(II)] dihydrate, C14H18MnN12O12
  11. Crystal structure of Diaqua[5,5′-dicarboxy-2,2′-(propane-1,3-diyl)bis(1H-imidazole-4-carboxylato-k4 O,O′,N,N′)]iron(II), C13H14FeN4O10
  12. Crystal structure of poly[dimethanol-κ1O-(µ2-(E)-2-((2-oxidobenzylidene)amino)acetato)-(µ3-(E)-2-((2-oxidobenzylidene)amino)acetato)dicadmium(II)], C20H22Cd2N2O8
  13. Crystal structure of N 2,N 6-bis(2-(((E)-quinolin-8-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C39H27N7O2
  14. An I 6 2 anion in the crystal structure of theophyllinium triiodide monohydrate, C7H11I3N4O3
  15. The crystal structure of poly[6,6′-oxybis(4-(pyridin-1-ium-1-yl)-1,3,5,2,4,6-trioxatriborinan-2-olate)], [B6O9](C5H5N)2
  16. The crystal structure of (carbonato κ2 O,O′)(2-oxopyridin-1(2H)-olato-κN)tris(trimethylphosphine)rhodium(III) water solvate, C15H33NO5P3Rh
  17. The crystal structure of dibromido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Br2Cl2N8Zn
  18. Synthesis and crystal structure of 3-(((7-hydroxy-3-(4-hydroxy-3,5-dinitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)(nitroso)amino)propanoic acid, C19H14N4O11
  19. The crystal structure of 3-((4-chloro-N-(2-methoxyethyl)benzamido)methyl)phenyl methanesulfonate, C18H20ClNO5S
  20. Crystal structure of di([1,1′:3′,1″-terphenyl]-2′-yl)tellane, C36H26Te
  21. The crystal structure of diaqua-bis(pyrazolo[1,5-a]-pyrimidine-3-carboxylato-κ2 N,O)zinc(II), C14H12N6O6Zn
  22. Crystal structure of N′,N‴-((1E,2E)-1,2-diphenylethane-1,2-diylidene)bis(4-methylbenzohydrazide) – water – methanol (1/1/1), C31H32N4O4
  23. Crystal structure of 3-((2,4-dichlorobenzyl)thio)-5-methyl-7-(trifluoromethyl)-[1,2,4]triazolo [4,3-c]pyrimidine, C14H9Cl2F3N4S
  24. Crystal structure of 3,5,6,7-tetramethoxy-3′,4′-methylenedioxy-flavone, C20H18O8
  25. Crystal structure of catena-poly[(5,5′-dimethyl-2,2′-bipyridine-κ 2 N,N′)-(μ 3-hydrogen-1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tris(piperidine-4-carboxylato)- κ 5 O:O,O′:O″,O‴)-cadmium(II)], C33H40CdN8O6
  26. The crystal structure of 3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C9H17N3
  27. Crystal structure of [(1,4,7,10-tetraoxacyclododecane-κ 4 O,O′,O″, O‴)-tris(nitrato-κ 2 O,O′)gadolinium(III)], C8H16N3O13Gd
  28. The crystal structure of 2,2′-((pyridine-2,6-diylbis(methylene))bis(sulfanediyl))-bis(4,5-dihydro-1H-imidazol-3-ium) bromide, C13H19Br2N5S2
  29. Crystal structure of E-2-chloro-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)benzohydrazide, C16H14Cl2N2O2
  30. Crystal structure of 3-(adamantan-1-yl)-4-methyl-5-{[(4-nitrophenyl)methyl]sulfanyl}-4H-1,2,4-triazole, C20H24N4O2S
  31. The crystal structure of dimethanol-κ1O-(5,10,15,20-tetrakis(4-nitrophenyl)porphyrin-21,23-diido-κ4 O,O′,O″,O′″)manganese(III) trans-dicyanido-κ1C-bis(acetylacetonato-κ2 O,O′)ruthenium(III), C58H46N10O14RuMn
  32. The crystal structure of nitroxyl-κ N-{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl-κN 3)borato}nickel(II), C15H13BF9N7NiO
  33. The crystal structure of [(2,2′-bipyridine-κ2 N,N)-bis(6-phenylpyridine-2-carboxylato- κ2 N,O)nickel(II)] monohydrate, C34H26N4O5Ni
  34. The crystal structure of 5-(2-fluoro-3-methoxyphenyl)-1-(2-fluoro-6-(trifluoromethyl)benzyl)-6-methylpyrimidine-2,4(1H,3H)-dione, C20H15F5N2O3
  35. The crystal structure of ethyl 2,3,5-trifluoro-4-(4-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate, C14H12F3NO3
  36. [2,2′-{Ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(3-bromo-2-hydroxyphenyl)]iron(III) nitrate, C20H12Br2CuN2O2
  37. The crystal structure of 1-(2-iodophenyl)-4-phenyl-1H-1,2,3-triazole, C14H10IN3
  38. Synthesis and crystal structure of 2-(2-oxo-2-(thiophen-2-yl)ethyl)-4H-chromen-4-one, C15H10O3S
  39. {6,6′-((1E,1′E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-bromo-4-chlorophenolate)-κ4N,N′,O,O′}copper(II), C19H16Br2Cl2CuN2O2
  40. The crystal structure of N′-[bis(2-hydroxyphenyl)methylidene]pyridine-4-carbohydrazide, C19H15N3O3
  41. Crystal structure of 2-chloro-6-formylphenolato-κ2O,O′-(6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(2-chlorophenolato)κ4 N,N,O,O′)cobalt(III), C26H22Cl3CoN2O4
  42. The crystal structure of tetrakis(6-phenylpyridine-2-carboxylate-κ 2 N,O)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 2 O:O′)-bis(μ2-6-phenylpyridine-2-carboxylate-κ 3N,O:O)tetralead(II) C48H32N4O8Pb2
  43. The crystal structure of 3,7-dihydroxy-9-methoxy-4a-methyl-4aH-benzo[c] chromene-2,6-dione —dichloromethane (1/1), C16H14Cl2O6
  44. The crystal structure of (Z)-6-(((5-chloro-2-hydroxyphenyl)amino)methylene)- 4-nitrocyclohexa, C13H9ClN2O4
  45. Crystal structure of dichlorido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ1 N)zinc(II), C60H68O4N12Cl10Zn
  46. The crystal structure of 4-(2-bromoethoxy)-2-hydroxybenzaldehyde, C9H9BrO3
  47. The crystal structure of 5-azido-1-methyl-4-nitroimidazole, C4H4O2N6
  48. Crystal structure of dibromido-tetra((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)zinc(II), C60H68O4N12Br2Cl8Zn
  49. Crystal structure of tetrasodium-bis(μ 2-oxido)-hexafluoro-didioxo-molybdenum(V), Na2(Mo2O4F6)
  50. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4- hydroxybenzohydrazide-water (1/1), C14H13Cl1N2O4
  51. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinolin-2-yl)methanimine, C20H19N3O
  52. The crystal structure of catena-poly[(1,10-phenanthroline-κ2 N,N′)-(μ3-2-hydroxybenzene-1,3-dicarboxylato-κ5 O,O′:O″,O‴:O‴)cadmium(II)], C20H12CdN2O5
  53. The crystal structure of 2,6-di-tert-butyl-4-(4-(methylthio)benzylidene)cyclohexa-2,5-dien-1-one, C22H28OS
  54. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure
  55. Crystal structure of (E)-N-(4-morpholinophenyl)-1-(quinoxalin-2-yl)methanimine, C19H18N4O
  56. The crystal structure of 2,2′-(1,2-phenylenebis(methylene))bis(1,3-dimethylisothiouronium) bromide, C14H24Br2N4S2
  57. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N]zinc(II), C18H20ZnN6O8
  58. Crystal structure of bis(tricarbonyl)-{(S)-(tert-butoxycarbonyl)(1-methoxy-1-oxo-3-sulfido-k2 S:S′-propan-2-yl)amido-k2N:N′}diiron(I) (Fe—Fe), C15H15Fe2NO10S
  59. Crystal structure of (E)-3-((4-chlorophenyl)thio)-4-hydroxypent-3-en-2-one, C11H11ClO2S
  60. The crystal structure of (E)-3′,6′-bis(diethylamino)-2-((5-(diethylamino)-2-hydroxybenzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C39H45N5O3
  61. The crystal structure of 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one, C20H14O3
  62. The crystal structure of trans-dichlorido-(ethylenediamine-κ 2 N,N′)-bis(triphenylphosphine-κ 1 P)ruthenium(II), C38H38Cl2N2P2Ru
  63. The double polymeric chain of catena-poly[(μ2-6-bromopyridine-3-carboxylato-κ2 O,O′) (6-bromopyridine-3-carboxylato-κ2 O,O′) (μ2-1,2-bis(4-pyridyl)ethylene-κ2 N:N′)cobalt(II)], C24H16CoBr2N4O4
  64. The crystal structure of tert-butyl 2-(4-(12-bromo [2.2]paracyclophanyl)carbamoyl)pyrrolidine-1-carboxylate, C26H31BrN2O3
  65. The crystal structure of (Z)-2-(2,3-dimethoxybenzylidene)naphtho[1,2-b]furan-3(2H)-one, C21H16O4
  66. Crystal structure of 2-hydroxy-1-tosylindolin-3-yl- 2-naphthoate, C26H21N1S1O5
  67. The crystal structure of 1-methyl-N-(1-methyl-1H-imidazole-2-carbonyl)-1H-imidazole-2-carboxamide, C10H11N5O2
  68. The crystal structure of (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-3′,6′-bis(ethylamino)-2′, 7′-dimethylspiro[isoindoline-1,9′-xanthen]-3-one, C33H31BrN4O3
  69. The crystal structure of dimethanol-5,15-diphenylporphyrin-21,23-diido-κ4 N,Nʹ,Nʺ,Nʹʺ-manganese(III) trans-dicyanido-bis(acetylacetonato-κ2O,Oʹ)ruthenium(III), C46H42N6O6RuMn
  70. Crystal structure of 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3,5-dicarboxybenzoate), C28H36N4O12
  71. Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C22H10F4I2N4
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0454/html
Scroll to top button