Startseite Mathematik Classification of the Blaschke Isoparametric Hypersurfaces in Lorentzian Space Forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Classification of the Blaschke Isoparametric Hypersurfaces in Lorentzian Space Forms

  • Fengyun Zhang und Huafei Sun EMAIL logo
Veröffentlicht/Copyright: 29. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study regular immersed hypersurfaces in Lorentzian space forms with a conformal metric, a conformal second fundamental form, the conformal Blaschke tensor and a conformal form, which are invariants under the conformal transformation group. We classify all the immersed hypersurfaces in Lorentzian space forms with two distinct constant Blaschke eigenvalues and vanishing conformal form.

References

[1] AKIVIS, M. A.-GOLDBERG, V. V.: Conformal Differential Geometry and Its Generalizations, Wiley, New York, 1996.10.1002/9781118032633Suche in Google Scholar

[2] AKIVIS, M. A.-GOLDBERG, V. V.: A conformal differential invariant and the conformal rigidity of hypersurfaces, Proc. Amer. Math. Soc. 125 (1997), 2415-2424.10.1090/S0002-9939-97-03828-8Suche in Google Scholar

[3] LI,H. Z.-LIU, H. L.-WANG,C. P.-ZHAO, G. S.: M¨obius isoparametric hypersurfaces in Sn+1 with two distinct principal curvatures, Acta Math. Sin. (Engl. Ser.) 18 (2002), 437-446.10.1007/s10114-002-0173-ySuche in Google Scholar

[4] LI, X. X.-ZHANG, F. Y.: A M¨obius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature, Manuscripta Math. 117 (2005), 135-152.10.1007/s00229-005-0548-3Suche in Google Scholar

[5] LI, X. X.-ZHANG, F. Y.: A M¨obius classification of immersed hypersurfaces in spheres with parallel Blaschke tensors, Tohoku Math. J. 58 (2006), 581-597.10.2748/tmj/1170347691Suche in Google Scholar

[6] LI, X. X.-ZHANG, F. Y.: Immersed hypersurfaces in the unit sphere Sm+1 with constant Blaschke eigenvalues, Acta Math. Sin. (Engl. Ser.) 23 (2007), 533-548.10.1007/s10114-005-0919-4Suche in Google Scholar

[7] LI, X. X.-ZHANG, F. Y.: On the Blaschke isoparametric hypersurfaces in the unit sphere, Acta Math. Sin. (Engl. Ser.) 25 (2009), 657-678.10.1007/s10114-008-7122-3Suche in Google Scholar

[8] NIE, C. X.-LI, T. Z.-HE, Y. J.-WU, C. X.: Conformal isoparametric hypersurfaces with two distinct conformal pricipal curvatures in conformal space, ActaMath. Sin. (Engl. Ser.) 53 (2010), 953-965.Suche in Google Scholar

[9] NIE, C. X.-MA, X.-WANG,C. P.: Conformal CMC-surface in Lorentzian space forms, Chin. Ann. Math. Ser. B 28 (2007), 299-310.10.1007/s11401-006-0041-7Suche in Google Scholar

[10] NIE, C. X.-WU, C. X.: Space-like hypersurfaces with parallel conformal second fundamental forms in conformal space, Acta Math. Sinica (Chin. Ser.) 51 (2008), 685-692.Suche in Google Scholar

[11] NIE, C. X.-TIAN, D. P.-WU, C. X.: Classification of type I time-like hypersurfaces with parallel conformal second fundamental forms in the conformal space, Acta Math. Sinica (Chin. Ser.) 54 (2011), 125-136.Suche in Google Scholar

[12] WANG, C. P.: M¨obius geometry of submanifolds in Sn, Manuscripta Math. 96 (1998), 517-534.10.1007/s002290050080Suche in Google Scholar

[13] WANG, C. P.: Canonical equiaffine hypersurfaces in Rn+1, Math. Z. 214 (1993), 579-592.10.1007/BF02572426Suche in Google Scholar

[14] WEI, G. X.-LIU, Q. L.-SUH, Y. J.: Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space Hn+1 1 (−1), Czechoslovak Math. J. 59 (2009), 343-351.10.1007/s10587-009-0024-4Suche in Google Scholar

Received: 2012-9-11
Accepted: 2012-10-10
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0048/pdf
Button zum nach oben scrollen