Home Optimality Conditions for Vector Equilibrium Problems with Set-Valued Mappings and Cone Constraints
Article
Licensed
Unlicensed Requires Authentication

Optimality Conditions for Vector Equilibrium Problems with Set-Valued Mappings and Cone Constraints

  • Adela Capătă EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

The purpose of this paper is to establish necessary and sufficient conditions for a point to be solution of a vector equilibrium problem with setvalued mappings and cone constraints. Using a separation theorem which involves the quasi-relative interior of a convex set, we obtain optimality conditions for solutions of the considered vector equilibrium problem. The main theorem recovers an earlier established result. Then, the results are applied to vector optimization problems and to Stampacchia vector variational inequalities with cone constraints.

References

[1] ANSARI, Q. H.-KONNOV, I. V.-YAO, J. C.: On generalized vector equilibrium problems, Nonlinear Anal. 47 (2001), 543-554.10.1016/S0362-546X(01)00199-7Search in Google Scholar

[2] ANSARI, Q. H.-OETTLI, W.-SCHL¨AGER, D.: A generalization of vector equilibria, Math. Methods Oper. Res. 46 (1997), 147-152.10.1007/BF01217687Search in Google Scholar

[3] ANSARI, Q. H.-SIDDIQI, A. H.-WU, S. Y.: Existence and duality of generalized vector equilibrium problems, J. Math. Anal. Appl. 259 (2001), 115-126.10.1006/jmaa.2000.7397Search in Google Scholar

[4] ANSARI, Q. H.-YAO, J. C.: An existence result for the generalized vector equilibrium problem, Appl. Math. Lett. 12 (1999), 53-56.10.1016/S0893-9659(99)00121-4Search in Google Scholar

[5] BORWEIN, J. M.-GOEBEL, R.: Notions of relative interior in Banach spaces, J.Math. Sci. 115 (2003), 2542-2553.10.1023/A:1022988116044Search in Google Scholar

[6] BORWEIN, J. M.-LEWIS, A. S.: Partially finite convex programming, part I: Quasi relative ineriors and duality theory, Math. Program. 57 (1992), 15-48.10.1007/BF01581072Search in Google Scholar

[7] DANIELE, P.-GIUFFR`E, S.-MAUGERI, A.: Infinite dimensional duality and applications, Math. Ann. 339 (2007), 221-239.10.1007/s00208-007-0118-ySearch in Google Scholar

[8] GONG, X. H.: Optimality conditions for vector equilibrium problems, J. Math. Anal. Appl. 342 (2008), 1455-1466.10.1016/j.jmaa.2008.01.026Search in Google Scholar

[9] GEORGIEV, P. G.-TANAKA, T.: Vector-valued set-valued variants of Ky Fan’s inequality, J. Nonlinear Convex Anal. 1 (2000), 245-254.Search in Google Scholar

[10] HOLMES, R. B.: Geometric Functional Analysis and its Applications, Springer-Verlag, Berlin, 1975.10.1007/978-1-4684-9369-6Search in Google Scholar

[11] HUANG, N. J.-LI, J.-WU, S. Y.: Gap functions for a system of generalized vector quasi-equilibrium problems with set-valued mappings, J. Global Optim. 41 (2008), 401-415.10.1007/s10898-007-9248-8Search in Google Scholar

[12] JAHN, J.: Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.10.1007/978-3-540-24828-6Search in Google Scholar

[13] KONNOV, I. V.-YAO, J. C.: Existence of solutions for generalized vector equilibrium problems, J. Math. Anal. Appl. 233 (1999), 328-335.10.1006/jmaa.1999.6312Search in Google Scholar

[14] LI, Z. F.: Benson proper efficiency in the vector optimization of set-valued maps, J. Optim. Theory Appl. 98 (1998), 623-649.10.1023/A:1022676013609Search in Google Scholar

[15] LIMBER, M. A.-GOODRICH, R. K.: Quasi interiors, Lagrange multipliers and lp spectral estimation with lattice bounds, J. Optim. Theory Appl. 78 (1993), 143-161.10.1007/BF00940705Search in Google Scholar

[16] LIU, Q. Y.-LONG, X. J.-HUANG, N. J.: Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems, Math. Slovaca 62 (2012), 123-136.10.2478/s12175-011-0077-3Search in Google Scholar

[17] MA, B. C.-GONG, X. H.: Optimality conditions for vector equilibrium problems in normed spaces, Optimization 60 (2011), 1441-1455.10.1080/02331931003657709Search in Google Scholar

[18] MORGAN, J.-ROMANIELLO, M.: Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities, J. Optim. Theory Appl. 130 (2001), 309-316.10.1007/s10957-006-9104-xSearch in Google Scholar

[19] OETTLI, W.-SCHL¨AGER, D.: Existence of equilibria for monotone multivalued mappings, Math. Methods Oper. Res. 48 (1998), 219-228.10.1007/s001860050024Search in Google Scholar

[20] QIU, Q.: Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity, J. Inequal. Appl. doi:10.1155/2009/898213.10.1155/2009/898213Search in Google Scholar

[21] QIU, Q. S.: Optimality conditions for vector valued equilibrium problems with constraints, J. Ind. Manag. Optim. 5 (2009), 783-790.10.3934/jimo.2009.5.783Search in Google Scholar

[22] ROCKAFELLAR, R. T.: Conjugate Duality and Optimization, Soc. for Industrial and Appl. Math., Philadelphia, 1974.10.1137/1.9781611970524Search in Google Scholar

[23] ZĂLINESCU, C.: Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.10.1142/5021Search in Google Scholar

Received: 2012-1-17
Accepted: 2012-10-1
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0047/html
Scroll to top button