Home Classification of the Blaschke Isoparametric Hypersurfaces in Lorentzian Space Forms
Article
Licensed
Unlicensed Requires Authentication

Classification of the Blaschke Isoparametric Hypersurfaces in Lorentzian Space Forms

  • Fengyun Zhang and Huafei Sun EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

In this paper, we study regular immersed hypersurfaces in Lorentzian space forms with a conformal metric, a conformal second fundamental form, the conformal Blaschke tensor and a conformal form, which are invariants under the conformal transformation group. We classify all the immersed hypersurfaces in Lorentzian space forms with two distinct constant Blaschke eigenvalues and vanishing conformal form.

References

[1] AKIVIS, M. A.-GOLDBERG, V. V.: Conformal Differential Geometry and Its Generalizations, Wiley, New York, 1996.10.1002/9781118032633Search in Google Scholar

[2] AKIVIS, M. A.-GOLDBERG, V. V.: A conformal differential invariant and the conformal rigidity of hypersurfaces, Proc. Amer. Math. Soc. 125 (1997), 2415-2424.10.1090/S0002-9939-97-03828-8Search in Google Scholar

[3] LI,H. Z.-LIU, H. L.-WANG,C. P.-ZHAO, G. S.: M¨obius isoparametric hypersurfaces in Sn+1 with two distinct principal curvatures, Acta Math. Sin. (Engl. Ser.) 18 (2002), 437-446.10.1007/s10114-002-0173-ySearch in Google Scholar

[4] LI, X. X.-ZHANG, F. Y.: A M¨obius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature, Manuscripta Math. 117 (2005), 135-152.10.1007/s00229-005-0548-3Search in Google Scholar

[5] LI, X. X.-ZHANG, F. Y.: A M¨obius classification of immersed hypersurfaces in spheres with parallel Blaschke tensors, Tohoku Math. J. 58 (2006), 581-597.10.2748/tmj/1170347691Search in Google Scholar

[6] LI, X. X.-ZHANG, F. Y.: Immersed hypersurfaces in the unit sphere Sm+1 with constant Blaschke eigenvalues, Acta Math. Sin. (Engl. Ser.) 23 (2007), 533-548.10.1007/s10114-005-0919-4Search in Google Scholar

[7] LI, X. X.-ZHANG, F. Y.: On the Blaschke isoparametric hypersurfaces in the unit sphere, Acta Math. Sin. (Engl. Ser.) 25 (2009), 657-678.10.1007/s10114-008-7122-3Search in Google Scholar

[8] NIE, C. X.-LI, T. Z.-HE, Y. J.-WU, C. X.: Conformal isoparametric hypersurfaces with two distinct conformal pricipal curvatures in conformal space, ActaMath. Sin. (Engl. Ser.) 53 (2010), 953-965.Search in Google Scholar

[9] NIE, C. X.-MA, X.-WANG,C. P.: Conformal CMC-surface in Lorentzian space forms, Chin. Ann. Math. Ser. B 28 (2007), 299-310.10.1007/s11401-006-0041-7Search in Google Scholar

[10] NIE, C. X.-WU, C. X.: Space-like hypersurfaces with parallel conformal second fundamental forms in conformal space, Acta Math. Sinica (Chin. Ser.) 51 (2008), 685-692.Search in Google Scholar

[11] NIE, C. X.-TIAN, D. P.-WU, C. X.: Classification of type I time-like hypersurfaces with parallel conformal second fundamental forms in the conformal space, Acta Math. Sinica (Chin. Ser.) 54 (2011), 125-136.Search in Google Scholar

[12] WANG, C. P.: M¨obius geometry of submanifolds in Sn, Manuscripta Math. 96 (1998), 517-534.10.1007/s002290050080Search in Google Scholar

[13] WANG, C. P.: Canonical equiaffine hypersurfaces in Rn+1, Math. Z. 214 (1993), 579-592.10.1007/BF02572426Search in Google Scholar

[14] WEI, G. X.-LIU, Q. L.-SUH, Y. J.: Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space Hn+1 1 (−1), Czechoslovak Math. J. 59 (2009), 343-351.10.1007/s10587-009-0024-4Search in Google Scholar

Received: 2012-9-11
Accepted: 2012-10-10
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0048/html
Scroll to top button