Home Five Curious Congruences Modulo p2
Article
Licensed
Unlicensed Requires Authentication

Five Curious Congruences Modulo p2

  • Romeo Meštrović EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

Let p ≥ 3 be a prime, and let qp(2) := (2P 1 - 1)/p be the Fermat quotient of p to base 2. In this note, we prove that

.

As an application, using two combinatorial identities due to T. B. Staver in 1947 and G. Galperin and H. Gauchman in 2004, we obtain four curious combinatorial congruences modulo p2. As an auxiliary result, here we present an elementary proof of a congruence established by E. Lehmer in 1938. Notice that this con­gruence together with some other congruences given in our lemmas leads to the elementary proof of a beautiful Morley’s congruence due to F. Morley in 1895.

References

[1] AEBI, C.-CAIRNS, G.: Morley’s other miracle, Math. Mag. 85 (2012), 205-211.10.4169/math.mag.85.3.205Search in Google Scholar

[2] AGOH, T.-SKULA, L.: Kummer type congruences and Stickelberger subideals, Acta Arith. 73 (1996), 235-249.10.4064/aa-75-3-235-250Search in Google Scholar

[3] AGOH, T.-SKULA, L.: The fourth power of the Fermat quotient, J. Number Theory 128 (2008), 2865-2873.10.1016/j.jnt.2008.06.001Search in Google Scholar

[4] AGOH, T.-DILCHER, K.-SKULA, L.: Fermat quotients for composite moduli, J. Number Theory 66 (1997), 29-50.10.1006/jnth.1997.2162Search in Google Scholar

[5] AGOH, T.-DILCHER, K.-SKULA, L.: Wilson quotients for composite moduli, Math. Comp. 67 (1998), 843-861.10.1090/S0025-5718-98-00951-XSearch in Google Scholar

[6] BAYAT, M.: A generalization of Wolstenholme’s Theorem, Amer. Math. Monthly 104 (1997), 557-560.10.1080/00029890.1997.11990678Search in Google Scholar

[7] BINZ, J. C.: Solution to Problem no. 11103, Amer.Math.Monthly 113 (2006), 465-466.10.2307/27641967Search in Google Scholar

[8] DILCHER, K.-SKULA, L.: A new criterion for the first case of Fermat’s last theorem, Math. Comp. 64 (1995), 363-392.Search in Google Scholar

[9] DILCHER, K.-SKULA, L.: The cube of the Fermat quotient, Integers 6 (2006), #A24.Search in Google Scholar

[10] EISENSTEIN, G.: Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abh¨angen und durch gewisse lineare Funktional-Gleichungen definiert werden, Bericht. Kl. Pruss. Akad. Wiss. (1850), 36-42; Mathematische Werke, Vol. II, Chelsea, 1975, pp 705-711.Search in Google Scholar

[11] GALPERIN, G.-GAUCHMAN, H.: Problem no. 11103, Amer. Math. Monthly 111 (2004), 725.Search in Google Scholar

[12] GLAISHER, J. W. L.: On the residues of the sums of products of the first p−1 numbers, and their powers, to modulus p2 or p3, Q. J. Math. 31 (1900), 321-353.Search in Google Scholar

[13] GLAISHER, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression, Q. J. Math. 32 (1901), 271-305.Search in Google Scholar

[14] GOULD, H.W.: Combinatorial identities, a standardized set of tables listing 500 binomial coefficient summations (2nd ed.),West Virginia University, Morgantown, 1972 (Published by the author).Search in Google Scholar

[15] GRANVILLE, A.: Some conjectures related to Fermat’s Last Theorem, In: Number Theory (Banff, AB, 1988), W. de Gruyter, Berlin, 1990, pp. 177-192.10.1515/9783110848632-017Search in Google Scholar

[16] GRANVILLE, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. In: Organic Mathematics-Burnaby, BC 1995, CMS Conf. Proc., Vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp 253-276.Search in Google Scholar

[17] GRANVILLE, A.: The square of the Fermat quotient, Integers 4 (2004), #A22.Search in Google Scholar

[18] JAKUBEC, S.: Connection between the Wieferich congruence and divisibility of h+, Acta Arith. 71 (1995), 55-64.10.4064/aa-71-1-55-64Search in Google Scholar

[19] JAKUBEC, S.: Note on the congruences 2p−1 ≡ 1 (mod p2), 3p−1 ≡ 1 (mod p2), 2p−1 ≡ 1 (mod p2), 5p−1 ≡ 1 (mod p2), Acta Math. Univ. Ostrav. 6 (1998), 115-120.Search in Google Scholar

[20] JAKUBEC, S.: Note on Wieferich’s congruence for primes p ≡ 1 (mod 4), Abh. Math. Semin. Univ. Hambg. 68 (1998), 193-197.10.1007/BF02942562Search in Google Scholar

[21] JAKUBEC, S.: Connection between Fermat quotients and Euler numbers, Math. Slovaca 58 (2008), 19-30.10.2478/s12175-007-0052-1Search in Google Scholar

[22] KOHNEN, W.: A simple congruence modulo p, Amer. Math. Monthly 104 (1997), 444-445.10.1080/00029890.1997.11990662Search in Google Scholar

[23] LEHMER, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938), 350-360.10.2307/1968791Search in Google Scholar

[24] LEPKA, K.: Fermat quotients. In: LEPKA, K.: History of Fermat quotients Fermat- Lerch, Prometheus, Praha, 2000, pp. 29-41 (Czech).Search in Google Scholar

[25] LEPKA, K.: Lerch’s contribution to the theory of Fermat quotients. In: LEPKA, K.: History of Fermat quotients Fermat-Lerch, Prometheus, Praha, 2000, pp. 42-69 (Czech).Search in Google Scholar

[26] MEŠTROVI´C, R.: An elementary proof of a congruence by Skula and Granville, Arch. Math. (Brno) 48 (2012), 113-120.10.5817/AM2012-2-113Search in Google Scholar

[27] MEŠTROVI´C, R.: An extension of a congruence by Kohnen. Preprint, 2011, arXiv: 1109.2340v1 [math.NT].Search in Google Scholar

[28] MEŠTROVI´C, R.: An extension of the Sury’s identity and related congruences, Bull. Aust. Math. Soc. 85 (2012), 482-496.10.1017/S0004972711002826Search in Google Scholar

[29] MEŠTROVI´C, R.: Congruences involving the Fermat quotient, Czechoslovak Math. J. 63 (2013), 949-968.10.1007/s10587-013-0064-7Search in Google Scholar

[30] MORLEY, F.: Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n+1 is a prime, Ann. of Math. 9 (1895), 168-170.10.2307/1967516Search in Google Scholar

[31] RIBENBOIM, P.: 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, New York- Heidelberg-Berlin, 1979.10.1007/978-1-4684-9342-9Search in Google Scholar

[32] RIBENBOIM, P.: The New Book of Prime Number Records, Springer-Verlag, New York, 1996.10.1007/978-1-4612-0759-7Search in Google Scholar

[33] SKULA, L.: Fermat and Wilson quotients for p-adic integers, ActaMath. Univ. Ostrav. 6 (1998), 167-181.Search in Google Scholar

[34] SKULA, L.: Fermat’s last theorem and the Fermat quotients, Comment. Math. Univ. St. Pauli 41 (1992), 35-54.Search in Google Scholar

[35] SKULA, L.: A Remark on Mirimanoff polynomials, Comment. Math. Univ. St. Pauli 31 (1982), 89-97.Search in Google Scholar

[36] SKULA, L.: A note on some relations among special sums of reciprocals modulo p, Math. Slovaca 58 (2008), 5-10.10.2478/s12175-007-0050-3Search in Google Scholar

[37] SKULA, L.: Some historical aspects of the Fermat problem, Pokroky Mat. Fyz. Astron. 39 (1994), 318-330 (Czech).Search in Google Scholar

[38] SLAVUTSKII, I. SH.: Partial sums of the harmonic series, p-adic L-functions and Bernoulli numbers, Tatra Mt. Math. Publ. 20 (2000), 11-17.Search in Google Scholar

[39] STAVER, T. B.: Om summasjion av potenser av binomialkoeffisientene, Norsk Mat. Tidsskrift 29 (1947), 97-103.Search in Google Scholar

[40] SUN, Z.-H.: Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), 280-312.10.1016/j.jnt.2007.03.003Search in Google Scholar

[41] SUN, Z.-W.: Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010), 2473-2488.10.1007/s11425-010-3151-3Search in Google Scholar

[42] SUN, Z.-W.: Arithmetic theory of harmonic numbers, Proc. Amer.Math. Soc. 140 (2012), 415-428.10.1090/S0002-9939-2011-10925-0Search in Google Scholar

Received: 2012-8-26
Accepted: 2012-10-8
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0033/html
Scroll to top button